
Fibonacci Nos. a Multiple of 10,000

The USSR Olympiad Problem Book, by D. O. Shklarski, N . N. Chentzov, and I. M. Yaglom.

#95.* Let {un}∞n=0 = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, · · · be the Fibonacci numbers
(indexing starts at 0, so u0 = 0, u1 = 1, u2 = 1, · · · ). Is there a number terminating with four
zeroes among the first 100,000,001 Fibonacci numbers?

Proof. Start with one zero rather than four. u15 = 610 and u30 = 832, 040, and a Python
program suggests that this pattern continues; namely, that k ≡ 0 (mod 15) =⇒ un ≡ 0
(mod 10). The first step to proving this is to note that the Fibobnacci numbers follow the
pattern even – odd – odd – even – odd – odd – ... That is:

k ≡ 0 (mod 3) =⇒ uk ≡ 0 (mod 2), uk+1 ≡ uk+2 ≡ 1 (mod 2). (1)

The proof is by induction. For suppose (1) holds for k. It suffices to prove that (1) holds with
k replaced by k + 3. Then:

uk+3 ≡ uk+2 + uk+1 ≡ 1 + 1 ≡ 0 (mod 2),

uk+4 ≡ uk+3 + uk+2 ≡ 0 + 1 ≡ 1 (mod 2),

uk+5 ≡ uk+4 + uk+3 ≡ 1 + 0 ≡ 1 (mod 2).

These three statements prove the inductive step, so (1) holds for all k. Next note that u5 =
5, u10 = 55, u15 = 610, suggesting that uk is a multiple of 5 when k is, a hypothesis confirmed
by Python for larger values of k. Again the proof is by induction. For suppose that:

k ≡ 0 (mod 5) =⇒ uk ≡ 0 (mod 5). (2)

Then:

uk+5 = uk+4 + uk+3

= (uk+3 + uk+2) + uk+3

= 2uk+3 + uk+2)

= 2(uk+2 + uk+1) + uk+2

= 3uk+2 + 2uk+1

= 3(uk+1 + uk) + 2uk+1

= 5uk+1 + 3uk. (3)

This last expression is congruent to 0 mod 5 if uk is, providing the inductive step, so (2) holds
for all k. (1) and (2) together imply that:

k ≡ 0 (mod 15) =⇒ uk ≡ 0 (mod 10).

————————————————————–

Note the coefficients in (3) are themselves Fibonacci numbers (5 and 3). This is not a coinci-
dence and in fact (3) can be generalized:



Theorem 1. uk+j = uj · uk+1 + uj−1 · uk, k ≥ 0, j ≥ 1. (4)

Proof. Use induction on j. For any k, put j = 1 and j = 2 in (4):

j = 1 : uk+1 = u1 · uk+1 + u0 · uk

uk+1 = 1 · uk+1 + 0 · uk ✓

j = 2 : uk+2 = u2 · uk+1 + u1 · uk

uk+2 = 1 · uk+1 + 1 · uk ✓

Assume (4) holds for j and j − 1 and add the two expressions:

uk+j = uj · uk+1 + uj−1 · uk

uk+(j−1) = uj−1 · uk+1 + u(j−1)−1 · uk

∴ uk+j + u(k+j)−1 = (uj + uj−1) · uk+1 + (uj−1 + uj−2) · uk

uk+(j+1) = uj+1 · uk+1 + uj · uk.

The last equation is (4) with j replaced by j + 1, proving the inductive step. qed.

Python suggests that: k ≡ 0 (mod 150) =⇒ un ≡ 0 (mod 100). This can be proven in two
parts, much like the case for mod 10. First put j = 25 in (4):

uk+25 = u25 · uk+1 + u24 · uk

uk+25 = 75, 025 · uk+1 + u24 · uk.

This shows that if 25 | uk, then 25 | uk+25; and since u0 = 0:

k ≡ 0 (mod 25) =⇒ uk ≡ 0 (mod 25). (5)

Secondly, put j = 6 in (4):

uk+6 = u6 · uk+1 + u5 · uk

uk+6 = 8 · uk+1 + u5 · uk.

This shows that if 4 | uk, then 4 | uk+6, implying that:

k ≡ 0 (mod 6) =⇒ uk ≡ 0 (mod 4). (6)

(5) and (6) together imply that:

k ≡ 0 (mod 150) =⇒ uk ≡ 0 (mod 100). (7)

————————————————————–

Python suggests that k ≡ 0 (mod 750) =⇒ un ≡ 0 (mod 1000). This is proven similarly to
the last result for mod 100. Here the key is that 750 = 25 · 30. (5) provides the neeeded result
for 25 and for 30 there is this:

uk+30 = u30 · uk+1 + u29 · uk. (8)

u30 = 832, 040 is a multiple of 40, so (8) implies that if 40 | uk, then 40 | uk+30, and:

k ≡ 0 (mod 30) =⇒ uk ≡ 0 (mod 40). (9)



(8) and (9) together imply that indeed:

k ≡ 0 (mod 750) =⇒ uk ≡ 0 (mod 1000). (10)

————————————————————–

Now it is time to tackle the problem as posed regarding Fibonacci numbers ending in four
zeroes. Python suggests that k ≡ 0 (mod 7500) =⇒ un ≡ 0 (mod 10, 000); in particular,
u7500 ≡ 0 (mod 10, 000), well under the limit of 100,000,001 Fibonacci numbers specified by
the problem. Take a moment to note how very large u7500 is at 1568 digits (un ∼ φn/

√
5, where

φ = (
√
5 + 1)/2 ∼ 1.618). Here the relevant factorization is 7500 = 12 · 625. The key facts are

that 16 | (u12 = 144) and 625 | u625. As earlier, write:

uk+12 = u12 · uk+1 + u11 · uk

uk+625 = u625 · uk+1 + u624 · uk.

to see that:

k ≡ 0 (mod 12) =⇒ uk ≡ 0 (mod 16)

k ≡ 0 (mod 625) =⇒ uk ≡ 0 (mod 625).

These two statements imply that:

k ≡ 0 (mod 7, 500) =⇒ uk ≡ 0 (mod 10, 000). (11)

WolframAlpha determines in a split second that u625 ≡ 0 (mod 625), but there were no com-
puters in 1935, when these problems were first proposed. Hand calculating a 131-digit number
like u625 at that time would’ve been truly grim. Carrying the calculations forward mod 625
would have considerably eased the pain, and reductions using (4) further simplify the task.
Consider this reduction:

k = 312, j = 313 : u625 = u313 · u313 + u312 · u312

k = 156, j = 157 : u313 = u157 · u157 + u156 · u156

k = 156, j = 156 : u312 = u156 · u157 + u155 · u156

Chaining these together, u625 can be expressed in terms of u155 and u156 – u157 as well, but that
too can be expressed as the sum of u155 and u156. Replicating this kind of reduction:

� u625 can be expressed in terms of u155 and u156

� u155 and u156 can be expressed in terms of u77 and u78

� u77 and u78 can be expressed in terms of u38 and u39

� u38 and u39 can be expressed in terms of u18 and u19

The calculation proceeds from the bottom up:

u18 = 2584 ≡ 84 (mod 625)

u19 = 4181 ≡ 431 (mod 625)

u20 = u18 + u19 ≡ 515 (mod 625)

∴ u38 = u19 · u20 + u18 · u19 ≡ 431 · 515 + 84 · 431 (mod 625)

≡ 44 (mod 625)

u39 = u20 · u20 + u19 · u19 ≡ 515 · 515 + 431 · 431 (mod 625)

≡ 361 (mod 625).



Working up to u625 is not particularly onerous, even with paper and pencil, and produces the
result that u625 ≡ 0 (mod 625), as claimed.

The final result is that (11) holds, so u7500 ends in four zeroes, and in fact um ends in four
zeroes whenever m is a multiple of 7500. QED.

————————————————————–

The first four rows below have been proven above, the last two are shown by Python and
WolframAlpha:

n #0s at the end of un

15 1
150 2
750 3
7500 4
75,000 5
750,000 6

It was proven for the first four rows that not only the value of n in the chart but also every
multiple of it, kn, has the indicated number of zeroes at the end of ukn. This is also true for
the last two rows, which is proven just like the case for n = 7500 immediately above.

————————————————————–

Finally, these values of n are the only ones such that un ends in the specified number of zeroes.
For one zero, this amount to the statement:

n ̸ | 15 =⇒ un does not end in zero. (12)

But the stronger statement

n ̸ | 3 =⇒ un is odd (13)

is implied by (1), proven at the top of this document. This proves (12). In fact, (13) proves
that the solutions implicit in the chart above are the only solutions, considering that each value
of n is a multiple of 3.
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