
Sums of Powers of Integers

The USSR Olympiad Problem Book, by D. O. Shklarski, N . N. Chentzov, and I. M. Yaglom.

#316. (a) Prove that the sum 1k + 2k + 3k + · · ·+ nk is a polynomial in n of degree k + 1.
(b) Calculate the coefficients of nk+1 and nk of this polynomial.

Proof. Put sp(n) =
n∑

k=1

kp = 1p + 2p + 3p + · · ·+ np. Note s0(n) = n and s1(n) = n(n + 1)/2.

Proceed as follows to derive s2(n) from these two:

(n+ 1)3 − n3 = 3n2 + 3n+ 1

n3 − (n− 1)3 = 3(n− 1)2 + 3(n− 1) + 1

(n− 1)3 − (n− 2)3 = 3(n− 2)2 + 3(n− 2) + 1

...

23 − 13 = 3 · 12 + 3 · 1 + 1

13 − 03 = 02 + 3 · 0 + 1

When adding these equations, the left side telescopes to give:

(n+ 1)3 = 3 ·
n∑

k=0

k2 + 3 ·
n∑

k=0

k + n+ 1

= 3 · s2(n) + 3 · s1(n) + s0(n) + 1. (1)

All the elements in equation (1) are known except for s2(n), which can therefore be calculated
from (1). The left side of (1) has degree 3, but s1(n) and s0(n) have degree 2 and 1 respectively,
so s2(n) is a polynomial in n of degree 3. Let α3 be the leading coefficient of s2(n). The leading
coefficient on the left side of (1) (the coefficient of n3) is 1 and the leading coefficient on the
right side of (1) is 3α3, so s2(n) is a third degree polynomial in n with leading coefficient
α3 = 1/3. Let β3 be the coefficient of second term in s2(n), that is, β3 is the coefficient of n2.
The coefficient of n2 on the left side of (1) is 3 and the coefficient of n2 on the right side of (1)
is 3β3 + 3/2 (the 3/2 is because the coefficient of n2 of s1(n) is 1/2). That is:

3 = 3β3 + 3/2

∴ 1 = β3 + 1/2

β3 = 1/2.

This solves the problem for k = 2 an makes possible the calculation of the other coefficients
of s2(n). Let γ3, δ3 be the coefficient of n and the constant term of s2(n). (1) reduces to this
taking into account only the linear and constant terms:

3n+ 1 = 3(γ3 · n+ δ3) + 3 ·
(
1

2
· n
)
+ n+ 1

∴
1

2
· n = 3 · γ3 · n+ 3δ3



It follows that γ3 = 1/6, δ3 = 0 and that:

s2(n) =
n∑

k=0

k2 =
1

3
n3 +

1

2
n2 +

1

6
n.

The method employed here to calculate s2(n) from s1(n) and s0(n) can be used to calculate
sp(n) from the earlier sq(n), where 0 ≤ q < p. The general formula analogous to (1) and derived
in the same way, is:

(n+ 1)p+1 − 1 =

p∑
k=0

(
p+ 1

k

)
sk(n), n ≥ 0, p ≥ 1. (2)

The proof proceeds by complete induction. Assume that for all 1 ≤ q < p, sq(n) is a polynomial
in n of degree q + 1 with αq = 1/(q + 1) and βq = 1/2. Separate out the pth summand on the
right side of (2):

(n+ 1)p+1 − 1 =

(
p+ 1

p

)
sp(n) +

p−1∑
k=0

(
p+ 1

k

)
sk(n).

= (p+ 1)sp(n) +

p−1∑
k=0

(
p+ 1

k

)
sk(n). (3)

By the inductive hypothesis, the sum on the right side of (3) is a polynomial in n of degree
p. The polynomial on the left side of (3) has degree p + 1 and has leading coefficient 1. Only
sp(n) can contribute to the np+1 term on the right side, so the coefficient of np+1 on the right
side is (p+ 1) · αp. It follows by induction that αp = 1/(p+ 1) and that sp(n) has degree p+ 1.

All three pieces of (3) contribute to the coefficient of np:

p+ 1 = (p+ 1) · βp +

(
p+ 1

p− 1

)
· 1
p
. (4)

Let’s take these three pieces one after the other in order to justify (4). The coefficient of np on
the left side of (3) is p + 1 by expanding (n + 1)p+1. By definition, βp is the coefficient of the
next-to-highest power of sp(n), a polynomial of degree p+ 1 — that is, βn is the coefficient of
np in sp(n). By (3), βp is multiplied by p+1. For the third part, the sum, the only contribution
to np comes when k = p− 1, which is the term appearing on the right of (4). Continuing from
(4):

p+ 1 = (p+ 1) · βp +
(p+ 1) · p

2
· 1
p

∴ 1 = βp +
1

2

βp =
1

2
.

This establishes that for p = 2, 3, 4, · · · , sp(n) is a polynomial in n of degree p+1 with leading
coeficient 1/(p+ 1) and the next-to-leading coefficient 1/2. QED.

—————————————————————–

Blaise Pascal developed this approach in the seventeenth century in Potestatum Numericarum
Summa (The Sum of Powers of Numbers), a short appendex to his account of what is now
known as Pascal’s Triangle.



Pascal used these formulas to find areas under polynomial
curves much as we would today. The figure here shows a
Riemann sum for f(x) = x2 between x = 0 and x = 1,
where the partition points are equally spaced between 0 and
1.

The heights of the rectangles are given by f(1/n), f(2/n),
· · · f((n − 1)/n) and the width of each of them is 1/n, so
their areas can be easily summed. The idea is to let n in-
crease indefinitely so the rectangles get thinner and the sum
of their areas gets closer and closer to the area under the
curve, defined to be

∫ 1

0
x2dx, the integral of f(x) = x2 from

0 to 1. The process is called integrating f(x) from 0 to 1.
The sum of these rectangles Sn(x

2) is a Riemann sum and is calculated like this:

Sn(x
2) =

1

n
· f
(
1

n

)
+

1

n
· f
(
2

n

)
+ · · ·+ 1

n
· f
(
n− 1

n

)
=

1

n
·

((
1

n

)2

+

(
2

n

)2

+ · · ·+
(
n− 1

n

)2
)

=
1

n3

(
12 + 22 + · · ·+ (n− 1)2

)
=

1

n3

(
1

3
(n− 1)3 + polynomial in n of degree 2

)
=

1

n3

(
1

3
n3 + polynomial in n of degree 2

)
=

1

3
+

polynomial in n of degree 2

n3
−→ 1

3
.

So: ∫ 1

0

x2dx =
1

3
,

and similarly since sp(n) = 1/(p+ 1) · xp+1+ a polynomial in n of degree p:∫ 1

0

xpdx =
1

p+ 1
.

If g(x) = axp + bxq, where a ≥ 0, b ≥ 0 and p and q are integers greater than 0, then the areas
add and scale: ∫ 1

0

g(x)dx =

∫ 1

0

(axp + bxq)dx

=

∫ 1

0

axpdx+

∫ 1

0

bxqdx

= a

∫ 1

0

xpdx+ b

∫ 1

0

xqdx

=
a

p+ 1
+

b

q + 1
.



Extending the argument to any number of summands provides a formula for integrating any
polynomial with non-negative coefficients from 0 to 1.

Change the upper limit from 1 to some positive number u. Then the calculation for Sn(x
2)

can be replicated by scaling the diagram / calculation by u horizontally — again there are n
rectangles, but now each has a width of u/n and the ordinates are u/n, 2u/n, · · · . Working
through he calculation, there will be a multiplier of u3 in front of the sum, so:∫ u

0

x2dx =
u3

3
,

and similar considerations result in: ∫ u

0

xpdx =
up+1

p+ 1
.

The discussion can be continued in natural ways to adjust the lower limit and provide for
negative coefficients (if the curve runs under the x-axis, the integral becomes negative!). The
upshot is that Pascal’s approach enables the integration of any polynomial. QED.
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