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#28. (a) Prove that 35 | (36n − 26n) for every positive integer n.

Proof. By direct calculation:

36 ≡ 4 ≡ −1 (mod 5), 26 ≡ 4 ≡ −1 (mod 5)

312 ≡ 1 (mod 5), 212 ≡ 1 (mod 5)

318 ≡ −1 (mod 5), 218 ≡ −1 (mod 5)

324 ≡ 1 (mod 5), 224 ≡ 1 (mod 5).

and the rows continue to oscillate between −1 and 1:

36n = (36)n ≡ (−1)n (mod 5)

26n = (26)n ≡ (−1)n (mod 5)

∴ 36n − 26n ≡ (−1)n − (−1)n ≡ 0 (mod 5).

That is, 5 | (36n − 26n). Also:

36 = 729 ≡ 1 (mod 7)

∴ 36n =
(
36
)n ≡ 1n ≡ 1 (mod 7).

Similarly:

26 = 64 ≡ 1 (mod 7)

∴ 26n =
(
26
)n ≡ 1n ≡ 1 (mod 7).

Therefore 36n − 26n ≡ 1 − 1 ≡ 0 (mod 7); that is, 7 | (36n − 26n). Since both 5 and 7 divide
36n − 26n, 35 does as well. QED.

The solution in the book takes a different tack. Consider the identity:

x4 − y4 = (x+ y)
(
x3 − x2y + xy2 − y3

)
.

There is a similar identity for x2n−y2n for n = 1, 2, 3, . . . , so (x+y) | (x2n−y2n) as polynomials.
Plugging in x = 33 = 27, y = 23 = 8:(

33 + 23
) |((33)2n − (

23
)2n)

∴ 35 | (36n − 26n
)
. QED.

(b) 120 | (n5 − 5n3 + 4n) for every integer n.

Proof. Factor the polynomial:

n5 − 5n3 + 4n = n(n4 − 5n2 + 4)

= n
(
n2 − 1

) (
n2 − 4

)
= n(n− 1)(n+ 1)(n− 2)(n+ 2) (1)



The expression in equation (1) is a product of five consecutive integers, so 3 divides at least one
of them and 5 divides one of them. Also, 4 divides at least one of them and 2 divides another
one, so 8 divides the product. It follows that 3 · 5 · 8 = 120 divides the product. QED.

(c)* 56, 786, 730 | mn(m60 − n60) for all integers m,n.

Proof. First is to note that 56, 786, 730 = 2 · 3 · 5 · 7 · 11 · 13 · 31 · 61. Put M(m,n, p) =
mn(mp−1 − np−1) for integers m and n and prime p. It suffices to prove that each of those
primes divides M(m,n, 61) for all integers m and n. Fermat’s Little Theorem states that for
any prime p:

ap ≡ a (mod p) for any integer a.

Letting p = 61 and setting a to m and then n, this becomes:

m61 ≡ m (mod 61) for any integer m,

n61 ≡ n (mod 61) for any integer n.

Therefore:

M(m,n, 61) = mn(m60 − n60)

= m61 · n−m · n61

≡
(
m61 · n−m · n61

)
(mod 61)

≡ (m · n−m · n) (mod 61)

≡ 0 (mod 61).

That is, 61 | M(m,n, 61). Similarly 31 | M(m,n, 31). But M(m,n, 31) | M(m,n, 61) since
m60 − n60 = (m30 − n30)(m30 + n30). Therefore 31 | M(m,n, 61). Exactly the same argument
works for each of the primes in the factorization of 56,786,730, since for each of then, (p−1) | 60
and this implies that M(m,n, p) | M(m,n, 61). To see this, consider the identities:

a2 − b2 = (a− b)(a+ b)

a3 − b3 = (a− b)(a2 + ab+ b2)

a4 − b4 = (a− b)(a3 + a2b+ ab2 + b3)

...

an − bn = (a− b)(an−1 + an−2b+ . . .+ abn−2 + bn−1), n > 1. (2)

Equation (2) is proven by multiplying out the right side and cancelling like terms. This shows
that (a − b) | (an − bn), which can be generalized to s | r =⇒ (as − bs) | (ar − br). To see
how this works, consider the example r = 20, s = 4. Make the substitutions A = a4, B = b4.
Applying (2) for A,B and exponent 5 and substituting:

A5 −B5 = (A−B)
(
A4 + A3B + A2B2 + AB3 +B4

)
(a4)5 − (b4)5 =

(
a4 − b4

) (
(a4)4 + (a4)3b4 + (a4)2(b4)2 + a4(b4)3 + (b4)4

)
a20 − b20 =

(
a4 − b4

) (
a16 + a12b4 + a8b8 + a4b12 + b16

)
.

It follows from this that M(m,n, p) | M(m,n, 61) and p | M(m,n, 61) for all the other
key primes, just like for 61 and 31 and therefore the same is true of their product; namely,
56, 786, 730 | M(m,n, 61), where M(m,n, 61) = mn(m60 − n60). QED.
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