Solutions to
$$x^2 + y^2 + 1 \equiv 0 \pmod{p}$$

The USSR Olympiad Problem Book, by D. O. Shklarski, N. N. Chentzov, and I. M. Yaglom.

#248. Prove that, for any prime p, it is possible to find integers x and y such that $x^2 + y^2 + 1$ is divisible by p.

Proof. If p = 2, then x = 0, y = 1 is a solution, so assume p is an odd prime $(p \ge 3)$. To get the idea, consider squares in the case p = 11:

$0^2 \equiv 0$	$6^2 \equiv 3$
$1^2 \equiv 1$	$7^2 \equiv 5$
$2^2 \equiv 4$	$8^2 \equiv 9$
$3^2 \equiv 9$	$9^2 \equiv 4$
$4^2 \equiv 5$	$10^2 \equiv 1$
$5^2 \equiv 3$	

The values in the second column repeat the non-zero values in the first column in reverse order and this will be true for any p. To see this, let x be such that $1 \le x \le (p-1)/2$. Then:

$$(p-x)^2 \equiv p^2 - 2px + x^2 \equiv x^2 \pmod{p}.$$

Furthermore, the values in the first column don't repeat themselves. This too is generally the case. For suppose $x^2 = y^2 \pmod{p}$, where $1 \le x \le (p-1)/2$ and $1 \le y \le (p-1)/2$. Suppose without loss of generality that $x \le y$. Then:

$$x^{2} \equiv y^{2} \pmod{p}$$
$$y^{2} - x^{2} \equiv 0 \pmod{p}$$
$$(y - x)(y + x) \equiv 0 \pmod{p}$$
$$\text{ie } p \mid (y - x)(y + x).$$

y + x is strictly between 2 and p - 1, so $p \not| (y + x)$. Therefore $p \mid (y - x)$. But y - x is strictly between 0 and (p - 1)/2, so it can't be a multiple of p unless it's 0, that is, unless y = x. Note the key fact about prime numbers used here, namely, that if a prime divides a product, then it divides one of the factors (Euclid's Lemma). This proves that the set of $\{x^2\}$ for $1 \le x \le (p - 1)/2$ are all different.

The task is to find x and y with $x^2 = -(y^2 + 1)$, so make another chart for p = 11 running through the possibilities for x^2 and $-(y^2 + 1)$:

x	x^2	y	$-(y^2+1)$
0	0	0	10
1	1	1	9
2	4	2	6
3	9	3	1
4	5	4	5
5	3	5	7

Just like for x^2 , all the possible values for y^2 are different, so the same is true for $y^2 + 1$ and for $-(y^2 + 1)$. That is, the values in the fourth column are all different. There are 6 items in the second column and 6 in the fourth column and all are between 0 and 10, so at least one of the values must be repeated. The red items show the solution x = 1, y = 3; the bold items show the solution x = 4, y = 4.

This argument can be made for any prime p: the second column has (p+1)/2 different values between 0 and p-1 and the fourth column has (p+1)/2 different values between 0 and p-1, so at least one value must appear in both columns (otherwise there would be p+1 values all differing from each other, impossible because they are all between 0 and p-1). The associated values of x and y provide a solution to $x^2 + y^2 + 1 \equiv 0 \pmod{p}$. QED.

The entire argument goes through if 1 is replaced by any integer k: for any $k \in \mathbb{Z}$, there are x and y between 0 and (p-1)/2 such that $x^2 + y^2 + k \equiv 0 \pmod{p}$.

 Mike Bertrand May 30, 2024