Roots of $x^2 - 6x + 1 = 0$

The USSR Olympiad Problem Book, by D. O. Shklarski, N. N. Chentzov, and I. M. Yaglom.

#178.* Prove that if x_1 and x_2 are roots of the equation $x^2 - 6x + 1 = 0$, then $x_1^n + x_2^n$ is, for any natural number n, an integer not divisible by 5.

Proof. Re-label the roots α and β . Then by repeatedly multiplying each equation by α :

```
\alpha^{2} = 6\alpha - 1

\alpha^{3} = 6\alpha^{2} - \alpha

\alpha^{4} = 6\alpha^{3} - \alpha^{2}

\alpha^{5} = 6\alpha^{4} - \alpha^{3}

:
```

Therefore $\{u_n\} = \{\alpha^n\}$ satisfies a Fibonacci-like recurrence — namely:

$$u_0 = 1$$

 $u_1 = \alpha$
 $u_n = 6u_{n-1} - u_{n-2}, \quad n \ge 2.$ (1)

 $\{v_n\} = \{\beta^n\}$ satisfies the same recurrence and so does any linear combination $\{s \cdot \alpha^n + t \cdot \beta^n\}$. Putting s = t = 1 results in $w_n = \{\alpha^n + \beta^n\}$. Note:

$$x^{2} - 6x + 1 = 0$$

 $(x - \alpha)(x - \beta) = 0.$

implies that $\alpha + \beta = 6$, so:

$$w_0 = \alpha^0 + \beta^0 = 2$$

 $w_1 = \alpha^1 + \beta^1 = 6.$

Therefore $\{w_n\} = \{2, 6, 34, 198, 1154, \ldots\}$. In particular, all the w_n are integers. Next is to show that none of them is a multiple of 5. w_2 below is calculated from the recursive formula, and so too for the rest of them:

$$w_{n+2} = 6w_{n+1} - w_n$$

$$w_0 \equiv 2 \pmod{5}$$

$$w_1 \equiv 1 \pmod{5}$$

$$w_2 \equiv 4 \pmod{5}$$

$$w_3 \equiv 3 \pmod{5}$$

$$w_4 \equiv 4 \pmod{5}$$

$$w_5 \equiv 1 \pmod{5}$$

$$w_6 \equiv 2 \pmod{5}$$

$$w_7 \equiv 1 \pmod{5}.$$

Since $w_6 \equiv w_0 \pmod{5}$ and $w_7 = w_1 \pmod{5}$, the values repeat after that in cycles of 6, proving that none of them is a multiple of 5. QED.

This problem merits further discussion. The roots are:

$$\alpha = 3 + 2\sqrt{2} = 5.82843$$

 $\beta = 3 - 2\sqrt{2} = 0.17157.$

 β^n decreases monotonically to 0, and fairly rapidly, so α^n approaches the integer $\alpha^n + \beta^n$ from below, getting almost six times closer at every step:

n	$lpha^n$	α^n	β^n	β^n	$w_n = \alpha^n + \beta^n$
0	$1 + 0\sqrt{2}$	1	$1 - 0\sqrt{2}$	1	2
1	$3 + 2\sqrt{2}$	5.82843	$3 - 2\sqrt{2}$	0.17157	6
2	$17 + 12\sqrt{2}$	33.97056	$17 - 12\sqrt{2}$	0.02944	34
3	$99 + 70\sqrt{2}$	197.99495	$99 - 70\sqrt{2}$	0.00505	198
4	$577 + 408\sqrt{2}$	1153.99913	$577 - 408\sqrt{2}$	0.00087	1154
5	$3363 + 2378\sqrt{2}$	6725.99985	$3363 - 2378\sqrt{2}$	0.00015	6726

There are a number of striking things in this chart. One is that if $\alpha^n = a_n + b_n \sqrt{2}$, then $\beta^n = a_n - b_n \sqrt{2}$. Proceed as follows to prove this in general:

$$\alpha^{n} = a_{n} + b_{n}\sqrt{2}$$

$$\beta^{n} = c_{n} + d_{n}\sqrt{2}$$

$$\therefore \alpha^{n} + \beta^{n} = (a_{n} + c_{n}) + (b_{n} + d_{n})\sqrt{2}$$

$$(\alpha^{n} + \beta^{n}) - (a_{n} + c_{n}) = (b_{n} + d_{n})\sqrt{2}.$$
(2)

Considering that the left side of (2) is an integer, (2) is of the form $A = B\sqrt{2}$, where A and B are integers. Either both A and B are zero or neither of them is — the latter is precluded, because it would imply that $\sqrt{2}$ is rational. Therefore the coefficient on the right side of (2) is zero; that is, $d_n = -b_n$. Furthermore, $\{\alpha^n - \beta^n\}$ follows recurrence (1) as a linear combination of two other sequences that do, namely $\{\alpha^n\}$ and $\{\beta^n\}$. Since $\alpha^0 - \beta^0 = 0$ and $\alpha^1 - \beta^1 = 4\sqrt{2}$, $\alpha^n - \beta^n = C_n\sqrt{2}$ for some integer C_n no matter the value of n. It follows that:

$$\alpha^n - \beta^n = (a_n - c_n) + 2b_n\sqrt{2}$$

$$\therefore C_n\sqrt{2} = (a_n - c_n) + 2b_n\sqrt{2}$$

$$a_n - c_n = (C_n - 2b_n)\sqrt{2}.$$

As before, this implies that $c_n = a_n$, so:

$$\alpha^{n} = a_{n} + b_{n}\sqrt{2}$$

$$\beta^{n} = a_{n} - b_{n}\sqrt{2}$$

$$\therefore 2a_{n} = \alpha^{n} + \beta^{n}$$

$$a_{n} = \frac{1}{2}\alpha^{n} + \frac{1}{2}\beta^{n}$$

$$2\sqrt{2}b_{n} = \alpha^{n} - \beta^{n}$$

$$b_{n} = \frac{1}{2\sqrt{2}}\alpha^{n} - \frac{1}{2\sqrt{2}}\beta^{n}.$$
(3)

Therefore $\{a_n\} = \{1, 3, 17, 99, 577, \ldots\}$ also follows recursion (1), as does $\{b_n\} = \{0, 2, 12, 70, 408, \ldots\}$. As for parity:

$$a_0 = 1 \equiv 1 \pmod{2}$$

$$a_1 = 3 \equiv 1 \pmod{2}$$

$$\therefore a_2 \equiv (6a_1 - a_2) \pmod{2}$$

$$\equiv (6 \cdot 1 - 1) \equiv 1 \pmod{2}.$$

By induction, all the rest of the a_n are odd. Similarly, all the b_n are even. The integer $\alpha^n + \beta^n$ is even, since it is twice a_n .

 $a_n - b_n \sqrt{2} = \beta^n \to 0$, so:

$$a_n - b_n \sqrt{2} = \epsilon_n \to 0$$
$$\therefore \frac{a_n}{b_n} - \sqrt{2} = \frac{\epsilon_n}{b_n} \to 0.$$

considering that $b_n \to \infty$. Note that the convergence is from above since $\beta^n > 0$ and it is rapid, where $\delta_n = a_n/b_n - \sqrt{2}$ (note that $\sqrt{2} = 1.4142\ 13562$):

n	a_n	b_n	a_n/b_n	$\delta_n = a_n/b_n - \sqrt{2}$
1	3	2	$1.5000\ 00000$	$0.0857\ 86438$
2	17	12	$1.4166\ 66667$	$0.0024\ 53104$
3	99	70	$1.4142\ 85714$	$0.0000\ 72152$
4	577	408	$1.4142\ 15686$	$0.0000\ 02124$
5	3363	2378	$1.4142\ 13625$	$0.0000\ 00063$

 δ_n is decreasing by over a factor of 30 at each step in this chart. The key to showing this generally is to note from (3) that b_n is very close to $\alpha^n/(2\sqrt{2})$, so:

$$\delta_n = \frac{a_n}{b_n} - \sqrt{2}$$

$$= \frac{\beta^n}{b_n}$$

$$\approx \frac{\beta^n}{\alpha^n/(2\sqrt{2})}$$

$$= \left(\frac{\beta}{\alpha}\right)^n \cdot 2\sqrt{2}$$

$$= \left(\frac{3 - 2\sqrt{2}}{3 + 2\sqrt{2}}\right)^n \cdot 2\sqrt{2}$$

$$= \left(17 - 12\sqrt{2}\right)^n \cdot 2\sqrt{2}$$

$$= 0.02944^n \cdot 2\sqrt{2}.$$

The second to last step results from rationalizing the fraction on the previous line. This shows that δ_n decreases by a factor of almost $34 \approx 1/0.02944$ at each step.

Finally, $\alpha \cdot \beta = 1$ implies that for every positive integer *n*:

$$(\alpha \cdot \beta)^n = 1$$

$$\alpha^n \cdot \beta^n = 1$$

$$(a_n + b_n \sqrt{2}) \cdot (a_n - b_n \sqrt{2}) = 1$$

$$a_n^2 - 2b_n^2 = 1.$$

That is, $(x, y) = (a_n, b_n)$ is a solution of the Diophantine equation $x^2 - 2y^2 = 1$ for every positive integer n: $17^2 - 2 \cdot 12^2 = 1$, $99^2 - 2 \cdot 70^2 = 1$, and so on.

– Mike Bertrand May 20, 2024