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#178.* Prove that if x1 and x2 are roots of the equation x2 − 6x+ 1 = 0, then xn
1 + xn

2 is, for
any natural number n, an integer not divisible by 5.

Proof. Re-label the roots α and β. Then by repeatedly multiplying each equation by α:

α2 = 6α− 1

α3 = 6α2 − α

α4 = 6α3 − α2

α5 = 6α4 − α3

...

Therefore {un} = {αn} satisfies a Fibonacci-like recurrence — namely:

u0 = 1

u1 = α

un = 6un−1 − un−2, n ≥ 2. (1)

{vn} = {βn} satisfies the same recurrence and so does any linear combination {s · αn + t · βn}.
Putting s = t = 1 results in wn = {αn + βn}. Note:

x2 − 6x+ 1 = 0

(x− α)(x− β) = 0.

implies that α + β = 6, so:

w0 = α0 + β0 = 2

w1 = α1 + β1 = 6.

Therefore {wn} = {2, 6, 34, 198, 1154, . . .}. In particular, all the wn are integers. Next is to
show that none of them is a multiple of 5. w2 below is calculated from the recursive formula,
and so too for the rest of them:

wn+2 = 6wn+1 − wn

w0 ≡ 2 (mod 5)

w1 ≡ 1 (mod 5)

w2 ≡ 4 (mod 5)

w3 ≡ 3 (mod 5)

w4 ≡ 4 (mod 5)

w5 ≡ 1 (mod 5)

w6 ≡ 2 (mod 5)

w7 ≡ 1 (mod 5).

Since w6 ≡ w0 (mod 5) and w7 = w1 (mod 5), the values repeat after that in cycles of 6,
proving that none of them is a multiple of 5. QED.



————————————————-

This problem merits further discussion. The roots are:

α = 3 + 2
√
2 = 5.82843

β = 3− 2
√
2 = 0.17157.

βn decreases monotonically to 0, and fairly rapidly, so αn approaches the integer αn + βn from
below, getting almost six times closer at every step:

n αn αn βn βn wn = αn + βn

0 1 + 0
√
2 1 1− 0

√
2 1 2

1 3 + 2
√
2 5.82843 3− 2

√
2 0.17157 6

2 17 + 12
√
2 33.97056 17− 12

√
2 0.02944 34

3 99 + 70
√
2 197.99495 99− 70

√
2 0.00505 198

4 577 + 408
√
2 1153.99913 577− 408

√
2 0.00087 1154

5 3363 + 2378
√
2 6725.99985 3363− 2378

√
2 0.00015 6726

There are a number of striking things in this chart. One is that if αn = an + bn
√
2, then

βn = an − bn
√
2. Proceed as follows to prove this in general:

αn = an + bn
√
2

βn = cn + dn
√
2

∴ αn + βn = (an + cn) + (bn + dn)
√
2

(αn + βn)− (an + cn) = (bn + dn)
√
2. (2)

Considering that the left side of (2) is an integer, (2) is of the form A = B
√
2, where A and

B are integers. Either both A and B are zero or neither of them is — the latter is precluded,
because it would imply that

√
2 is rational. Therefore the coefficient on the right side of (2) is

zero; that is, dn = −bn. Furthermore, {αn − βn} follows recurence (1) as a linear combination
of two other sequences that do, namely {αn} and {βn}. Since α0 − β0 = 0 and α1 − β1 = 4

√
2,

αn − βn = Cn

√
2 for some integer Cn no matter the value of n. It follows that:

αn − βn = (an − cn) + 2bn
√
2

∴ Cn

√
2 = (an − cn) + 2bn

√
2

an − cn = (Cn − 2bn)
√
2.

As before, this implies that cn = an, so:

αn = an + bn
√
2

βn = an − bn
√
2

∴ 2an = αn + βn

an =
1

2
αn +

1

2
βn

2
√
2bn = αn − βn

bn =
1

2
√
2
αn − 1

2
√
2
βn. (3)



Therefore {an} = {1, 3, 17, 99, 577, . . .} also follows recursion (1), as does {bn} = {0, 2, 12, 70, 408, . . .}.
As for parity:

a0 = 1 ≡ 1 (mod 2)

a1 = 3 ≡ 1 (mod 2)

∴ a2 ≡ (6a1 − a2) (mod 2)

≡ (6 · 1− 1) ≡ 1 (mod 2).

By induction, all the rest of the an are odd. Similarly, all the bn are even. The integer αn + βn

is even, since it is twice an.

an − bn
√
2 = βn → 0, so:

an − bn
√
2 = ϵn → 0

∴
an
bn

−
√
2 =

ϵn
bn

→ 0.

considering that bn → ∞. Note that the convergence is from above since βn > 0 and it is rapid,
where δn = an/bn −

√
2 (note that

√
2 = 1.4142 13562):

n an bn an/bn δn = an/bn −
√
2

1 3 2 1.5000 00000 0.0857 86438

2 17 12 1.4166 66667 0.0024 53104

3 99 70 1.4142 85714 0.0000 72152

4 577 408 1.4142 15686 0.0000 02124

5 3363 2378 1.4142 13625 0.0000 00063

δn is decreasing by over a factor of 30 at each step in this chart. The key to showing this
generally is to note from (3) that bn is very close to αn/(2

√
2), so:

δn =
an
bn

−
√
2

=
βn

bn

≈ βn

αn/(2
√
2)

=

(
β

α

)n

· 2
√
2

=

(
3− 2

√
2

3 + 2
√
2

)n

· 2
√
2

=
(
17− 12

√
2
)n

· 2
√
2

= 0.02944n · 2
√
2.

The second to last step results from rationalizing the fraction on the previous line. This shows
that δn decreases by a factor of almost 34 ≈ 1/0.02944 at each step.



Finally, α · β = 1 implies that for every positive integer n:

(α · β)n = 1

αn · βn = 1

(an + bn
√
2) · (an − bn

√
2) = 1

a2n − 2b2n = 1.

That is, (x, y) = (an, bn) is a solution of the Diophantine equation x2 − 2y2 = 1 for every
positive integer n: 172 − 2 · 122 = 1, 992 − 2 · 702 = 1, and so on.
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