
A Filter for WordPerfect
Graphics Files
Michael Bertrand

e0J;;;:1 - Borland C++ v4.02
Symantec C++ v6.10
Visual C ++ v1 .5

A graphics filter is code that enables a program to read images created by
other programs in foreign formats, converting them to whatever format the
program uses internally. If the program defines its graphics filters as DLLs with
a specific function interface, then new graphics filters can be added without
altering the original program. In this article I explain the basic principles of
writing an interactive filter/ viewer for vector graphics images in Windows, using
WordPerfect's WPG format for illustration. The application discussed here,
SHOWWPG, can read WPG v5.x files from disk, scale them interactively as is
done in WordPerfect, and copy them to the clipboard as Windows metafiles. In
other words: the incoming foreign format is WPG, and the internal native for
mat is Windows metafile; SHOWWPG converts WPG files to Windows metaflles.
Since a Windows metafile is a static list of GDI calls, there is little distinction
between rendering the image and translating it to Windows metafile format;
the same code is used to do both. SHOWWPG is too long to be printed in its
entirety, so the code listings (funcs.c - Listing 1) focus on a few pivotal issues;
the entire source code is on this issue's code disk (see the table of contents for
availability information).

WordPerfect graphics files consist of vector graphics. In vector graphics, im
ages consist of a series of primitives, such as lines, polygons, ellipses, and so
on. Each primitive record in the vector graphics file contains coordinates defin
ing the primitive; a line record, for example, would contain (x7, y7) values for
the first endpoint and (x2, y2) values for the second endpoint. Drawing and
CAD programs typically implement vector formats because of the natural scal
ing such formats afford (doubling all coordinates doubles the size of the image).
This contrasts to bitmapped or raster graphics, where color codes for each pixel
in a rectangular region define an image. Bitmap formats include PCX, BMP, and
TIF, natural formats for paint programs and for scanners.

Mike Bertrand teaches Mathematics and programming at Madison Area Technical Col
lege, Madison, WI 53704.

Windows/DOS Developer's Journal - Page 31

Converting Records
A vector graphics filter traverses the incoming file re

cord by record, converting each record to its equivalent in
the native format. SHOWWPG's traverser function is
PlayWPGFile(), which goes through the WPG file in mem
ory, calling function DrawWPGRecord() to convert each record
to equivalent Windows GDI calls. DrawWPGRecord() switches
on the type of WPG record, calling utility functions to con
vert records (Drawline(), DrawPoly(), DrawEllipse(), and so

on). Windows' device independence comes to the rescue
here - if you pass DrawWPGRecord() a screen device context,
then it renders the WPG image on the screen, while if you
pass it a metafile device context, it creates a metafile.
Windows makes little distinction between a vector graph
ics viewer and filter.

Since different formats have different capabilities, re
cord matching is an imperfect business. Simple records
like lines and polylines (a series of connected line seg
ments) convert directly from WPG format to equivalent

The Professional Help Authoring
Tool That Everyone Can ·use!

Beginners Love 'It
Because It's.So Easy.

With Help Magician Pro 3.0,
you can develop online help and
documents seamlessly in a true
WYSIWYG environment much
like WinHelp. If you have
manuals or documents, Help
Magician Pro will import them
from any popular Windows
word processor and convert
them to online help. You can
simultaneously test your help
files while working on them.

Experts Love It
Because It's So Powerful.
Help Magician Pro has all the
flexibility you've come to expect
from a professional help -
authoring tool like support for
ALL WinHelp 3.1 features ; a
fool-proof macro editor,
multi-file project management,
multimedia support, automatic
glossary creation, and much
more.

§
_K:a _ __ .,...,.~,...-...,_--._.,.._ .. __ .,,.. __ ..__ .. ___ ...,.__.,._._.......,. --..-- .. _ __ ,... ___ ~ _,.....---"' --~------..,,___-.. ____ _ __..... ,._.,..~-.,------...... ~ ... ----.:::::::::: ... -* ... ___ ,.. _____ ,..._.,.. i.,.,.,.. ..

Actual Editing Environment

Here's The Scoop.
The Help Magician is a proven
product with years of customer
support and satisfaction. We can
demonstrate that the Heip
Magician Pro has more features
and is faster and easier to use
tha:p. any other help authoring
tool. Drop us a line at
1-800-542-2742 to get more
deti3.ils ari.d a FREE fully
functional demo disk. The Help
Magician Pro now includes the
Help Compil~r and SHED editor.

Order your copy of the Help Magician Pro 3.0 today. Only $249!
30-day satisfaction money-back guarantee.
Corporate site and network licensing available.

~ 11 r:i~;i~se
~ Incorporated
82 Cucumber Hill Rd, #213
Foster, RI 02825
Voice: (401) 397-2340
Fax: (401) 397. __ ·6=8::.;:1~4 __ _..J;........,.

c Request Reader Service #287 c

Page 32 - Windows/DOS Developer's Journal

GDI calls. Ellipse records present diffi
culties, since WPG ellipses can in
clude elliptical arcs, pie slices, chords,
and rotated ellipses. Toe first three
can be matched to Windows Arc(),
Pie(), and Chord() calls, but since
Windows doesn't provide for rotated
ellipses, you would have to write
your own algorithm to implement
this feature.

SHOWWPG takes some pains to
implement WPG's "fill attribute· re
cord. A fill attribute is a color and
pattern setting used to fill the interior
of all subsequent polygons in the
WPG file until the next fill attribute
record is encountered. This is the
same concept as Windows' brushes,
used to till polygonal areas.
SHOWWPG calls SetBrush() every
time a till attribute record is encoun
tered. SetBrush() creates and selects a
Windows brush matching the WPG
fill attribute record, making sure to
delete the previous brush to prevent
all these brushes from adding perma
nently to Windows' global heap. If
the till attribute record includes a pat
tern, SHOWWPG creates a Windows
bitmap matching the pattern, then
calls Windows' CreateDIBPattern
Brush() to create a brush based on
the bitmap. Fortunately, Windows
provides for 8-pixel-square pattern
brushes, the largest fill pattern en
countered in WPG fill attribute re
cords.

WPG's "line attribute· matches the
Windows concept of ·pen·, specifying
color, style, and width settings when
ever lines are drawn. This record is
difficult to implement, since Win
dows' pen support is minimal.
SHOWWPG implements WPG line-at
tribute color settings by creating and
selecting Windows pens, much as
with fill attributes and brushes. Since
Windows pens have few styles avail
able, and those only at one pixel

November 1994

Figure 1 Mapping WordPerfect graphics and
Windows screen coordinates

ram ... ---·-·- .. _ a al

WPG Coordinates

(0,7800) • (10800,7800)

Windows Coordinates

(640,0) (0,0D)

•

:•

•

(0,0) (10800,0) (640,480) (0,480) Double;click to zoom in arid oot.

Figure 2 SHOWWPG displaying a WPG file

Scaling thickness, supporting fill attribute style and width settings
would require an appeal to Windows· UneDDA() call, ena
bling Windows' line-drawing with any attributes.

SHOWWPG doesn't attempt to implement text or em
bedded bitmaps, both possible in WPG files. The traverser,
PlayWPGFile(), ignores and skips over unimplemented re
cords. Implementing a new record type requires adding
the record as a case constant in PlayWPGF7le(rs switch,
then calling and writing the function to support the new
record (that is, translating it into GDI calls).

Converting one vector format to another always in
volves scaling of coordinates, a core idea. Both WordPer
fect graphics and Windows have the concept of a
polyline, a series of straight line segments connected end
to end. But Windows' Polyline() cannot directly render the
image from the WPG file because the coordinate systems
are different. Coordinates in WPG files are based on WPG
space, which is 10,800 units wide by 7800 units high with
the origin, or (O,O) point, in the lower left. This differs

Make a lasting first impression with EDI Install Pro
EDI Install Pro is a powerful, full featured
installation toolkit designed to make your
work as effortless as possible.

Standard, professional interface.
Your customers will feel right at home with

EDI Install Pro's
standard, profes
sional interface. We
don't clutter our
windows with use
less gadgets or
hokey graphics. In

our opinion, a clean, standard interface,
makes for a better product and leaves a last
ing impression.

No script language to learn.
Don't waste your time learning yet another
script language, our simple information file
makes creating powerful installations a
breeze. In fact, using the INF Maker utility
you can complete even complex installa
tions in less than an hour!

Includes a complete uninstaller.
Included with EDI Install Pro is an incred
ible utility that allows your users to remove
your applications from their system in one
easy step! Our uninstaller removes or
changes .INI files; deletes application files,

Program Manager groups and optionally
user data files.

No hidden costs! "

l ~ mi~;1; ~
Unlike some of our
competitors, we don't ·-.::::=::::::. ,,:~
charge royalties, and we don't require that
you purchase a license for each product
you distribute. Ask our competitors about
their licenses - you'll be surprised.

You'll be in good company.
What do AT&T, Banyan Systems, Bell Can
ada, BP Oil, Cirrus Logic, Fannie Mae, East
man Kodak, NCR Canada, Pacific Bell, Po
laroid Corp., SunSelect, TRW, Xerox, Ziff
Davis Publishing, and the US Army Corps
of Engineers have in common? They all
bought EDI Install Pro. Shouldn't you?

Some EDI Install Pro Features:
Standard, professional interface; 3D op
tional • Dithered, tiled or bitmap back
ground• Bulletin bitmaps (billboards) •
r;,. - · . ··· •"""'_·''"''";" · · · · ·· I Progress dialog I l!'I - o.;,::i k . I · :::;::,- :~-=---- eeps users m-
, ::::,. :...-'7- formed • Select-
able components for custom installs • No
programming required • DLL expandable •
File compression & splitting • Version re
source checking • Disk branding with user

name • Auto font install • Create & mod
ify .INI files • Cre- :F- fflfiffl!i'lib -

P M I l!ill t.=.::,"1:,.:::-.:::.::::.•~ c:::Ew
ates rogram an- i ::.:-..-:-=-::::::::-.:.. eu:::i
ager groups & icons i 1,:;;;;::;·-- Ill

• Built-in readme : :::~--·-·•"-"
viewer• Small size (-80Kb) • Support for
floppy, hard disk, CD-ROM, Network, and
e-mail distribution • Ask about our new
OEM package!

All this plus much, much more!

Order Now For Only $179.95!
See our evaluation version on the BBS, or on

CompuServe's "WINSDK" forum, file "INSPRO.EXE".

~ITD
1r11@~WD@ITDv Dau~

24-2979 Panorama Drive
Coquitlam, BC VJE 2W8
Canada

Telephone/Fax: (604) 945-3198
Eschalon BBS: (604) 945-7602
CompuServe: 76625, 132D

VISAcards,US/(anadianchecksandbankdraftsaccepted(orderformsmustaccompanyall
draft orders).Sorry,noPOsaccepted.(anadianresidenu add7%GST. BC midentsadd7%
PST. Add SIO Shipping & handling (!IS oversm), $20 for federal Expre!! (!45 overseas).
All Prices are in US currency.

For European and multilingual orders, please contact: Windowshare SAHL (france),
voice at(+ ll) 87-30-81-17, fax at (+ll) 87-32-37-75, or Compulme at 100031 ,3217.

EDI Install Pro, EDI Unlnstall, and the Eschalon Development Inc. logo are uademarks of Eschalon Development Inc. Other names are (registered) trademarks of their respective companies, All prices and specifications subject to change without notice.

November 1994 Windows/DOS Developer's Journal - Page 33

markedly from standard screen resolutions of 640x480 or
800x600, with the origin at the upper left (see Figure 1).

In converting from WPG space to a screen space of
640x480, for example, I apply a scaling transformation to
a point (x,y) in WPG space to calculate its corresponding
point (x',y) on the screen. Wherever (x,y) is located in
WPG space, its corresponding point (x',y) is in the same
relative position on the screen. A scaling transformation is
denoted by:

long WINAPI _export WndProc(HWND hWnd, UINT message,
UINT wParam, LONG l Pa ram)

I*

*I
{

USE: SHOWWPG' s main window procedure.
IN: Standard WndProc() parameters.

WM_CREATE : Set normal caption
WM_ACTIVATE: Set minimized caption
WM_SIZE Update global ClientRect
WM_COMMAND : IDM_RETRIEVE triggers GetOpenFileName()

IDM_COPY copies to clipboard
IDM_ABOUT shows About Dl gBox

WM_PAINT : Traverse and display WPG file
WM_MOUSEMOVE : Pass along to Modify()
WM_LBUTTONDOWN: to size or translate
WM_LBUTTONUP :
WM_LBUTTONDBLCLK: Pass along to Modify() to zoom in
WM_RBUTTONDBLCLK: Pass along to Modify() to zoom out
WM_DESTROY : Finalize.

hBuf is a key global variable that is non-NULL if
and only if it is a valid memory handle to a WPG
file. Check hBuf to see if you have a file to show.

HANDLE hNewMem;
PAINTSTRUCT ps;

/* temp handle to file mem * /
/* needed in WM_PAINT * /

HOC hDC; /* needed in WM_PAINT */
LPSTR lpls; /* ptr to last ' \' in string*/
static FARPROC lpDlg; /* for About box function */

switch (message)
{
case WM_CREATE:

/* Write default caption for main window. */
wsprintf(Caption, "%s - (Untitled)". AppName);
SetWi ndowText(hWnd, Caption);
/* Default iconic name is just app name. */
l strcpy(Iconi cName, App Name);
break; /* WM_CREATE */

case WM_ACTIVATE:
/* When minimized , use AppName only for caption,
* else full caption.
*I

SetWindowText(hWnd, Islconic(hWnd) ? IconicName :
Caption);

break; /* WM_ACTIVATE */

case WM_SIZE:
/* Update global ClientRect. */
Get Cl i entRect(hWnd. &Cl i entRect);
break; /* WM_SIZE */

case WM_COMMAND:
switch (wParam)

{
case IDM_RETRI EVE:

/* Get file name, read into memory. * /
if ((hNewMem = LoadWPGFile(hWnd)) == NULL)

November 1994

(x,y) --> (x' ,y')

where x ' and y ' are separate x and y transformations:

x' = scaleX * x + offsX
y' = scaleY * y + offsY

You can calculate what scale factors and offsets to use
by picking two WPG coordinates and deciding which Win
dows coordinates you want to map them to. For example,

break;
/* If hBuf valid, free it and reset. */
if (hBuf) GlobalFree(hBuf);
hBuf = hNewMem;
break; /* IDM_RETRIEVE */

case IDM_COPY:
/* hBuf non-NULL means file is in memory. */
if (hBuf) CopyWMFToClipBoard(hWnd);
break; /* IDM_COPY */

case IDM_ABOUT:
l pDl g=MakeProclnstance((FARPROC)AboutDl gProc.

hlnst);
DialogBox(hlnst, "AboutBox". hWnd. lpDlg);
FreeProcl nstance(l pDl g);
break; /* IDM_ABOUT */

~ TWAIN support for your appllcatlon lllfar.1'

~ Do you want to support scanners with your
Windows application?

~ Do you think it makes sense to support the
industry standard TWAIN?

~ Do you want to save your resources?

~ Do you want to save money and time?

The TWAIN Integration Kit™ is the best choice to
implement TWAIN in MS-Windows applications.
Forget about the estimated 20 'man days', for the de
velopment of a TWAIN implementation. With the TIK
you have TWAIN in your application within a day or
less. For the value of only a few 'man days', you will
get the powerful and easy to use TIK DLL. The Price
is only $1995 and no runtime licenses are payable.
Order now or test the trial version first with a subspt
of commands for only $250. We anxiously await your
order or inquiry for further details on the TIK.

30-DAY MONEY-BACK GUARANTEE

JUNGCLAUSSORWAREENGINHRING P.O. Box 270 202 ~
D- 40525 Duesseldorf Germany . ~
FAX +49 211 562 31 12 CompuServe 100334.2207

Free demo ava ilable via CompuServe. Download TIKDEMO from WINSDK forum, section Public Utilities.

a Request Reader Service #222 a

Windows/DOS Developer's Journal - Page 35

break; /* WM_COMMAND * /

case WM_PAINT:
hDC = BeginPaint(hWnd, &ps);
if (hBuf) PaintWindow(hDC);
EndPaint(hWnd, &psl;
break ; /* WM_PAINT */

case WM_MOUSEMOVE:
case WM_LBUTTONDOWN:
case WM_LBUTTONUP :
case WM_LBUTTONDBLCLK :
case WM_RBUTTONDBLCLK:
if (hBuf)

Modify(hWnd , message, l Paraml;
else

/* SetCursor(l every MOUSEMOVE if no file . */
SetCursor(HCursor[NO_HIT] l;

break; /* WM_MOUSEMOVE . . . */

case WM_OESTROY :
/* Free memory handle if valid. */
if (hBufl Global Free(hBuf);
if ((lpl s = _fstrrchr(FileName, ' \\ ')) != NULL)

{
/* Excise file name so only path left. */
*lpls = 0;
/* Write current path to SHOWWPG . INI. */
WritePri vateProfi l eStri ng("Oefaults", "Path",

Fil eName, "SHOWWPG . !NI");
}

PostQuitMessage(0l:
break;

default : /* Passes it on if unproccessed */
return DefWi ndowProc(hWnd ,message, wPa ram, l Pa ram) ;

} /* switch */

return (NULL);

void LOCAL Modify(HWND hWnd, UINT message, LONG lParam)
I*

*I
{

USE: Sizing and translating tool.
IN: WndProc() parameters passed along .
NOTE: State tool with route WAITING- ->START_MODIFYING

-->MODIFYING -- >WAITING. START_MOOIFYING is the state
for the first WM_MOUSEMOVE after tool has started.
There are 9 modifications: translation + 8 types of
resizing. Which modification is triggered depends on
which hot spot the cursor was in at WM_LBUTTONDOWN.
Each modification has its own section in
Restri ctCursor(), DrawDraggi ngRect(), Update Scale(),
functions ca 11 ed respectively at WM_LBUTTONDOWN ,
WM_MOUSEMOVE, and WM_LBUTTONUP (Restri ctCusor()
initializes, DrawDraggingRect(l draws interactively ,
UpdateSca le() finalizes).

HOC hDC ;
stat i C POINT pt;
static HPEN hPen;
static HRGN hRgn:
static int hs;
static int state;

switch (message)
{

/* DC to draw on */
/* button-down point */
/ * dashed pen */
/* clip region*/
/ * hot spot index */
/* system state * /

case WM_LBUTTONDOWN :
if (state == WAITING)

if ((hs = PtinHotSpot(&TargetRect,
MAKEPOINT(]Param))l != NO_HITl

{
state = START_MODIFYING;
hPen = CreatePen(PS_DOT, 1, 0Ll ;

Page 36 - Windows/DOS Developer's Journal

hRgn = CreateRectRgn(0, 0, ClientRect.right,
Cl i entRect. bottom- (I LINE_HT+2 l);

pt = MAKE POINT(l Pa ram) ;
RestrictCursor(hs, hWnd, &pt);
}

break; /* WM_LBUTTONDOWN */

case WM_MOUSEMOVE :
switch (state)

{

case WAITING:
/* Set Cursor for hot spot or Arrow. */
SetCursor(HCursor[Pti nHotSpot(&Ta rgetRect,

MAKEPOINT(l Pa ram) l]);
break;

case START_MODIFYING:
state = MODIFYING;
hDC = GetDC(hWnd);
Se l ectObj ect(hDC, hRgn);
/* Erase Framed rect (XOR mode). */
SetROP2(hDC, R2_NOTXORPEN l;
FrameOurRect(hDC, &TargetRect);
/* Draw rect with SOLID pen first time . */
DrawDraggingRect(hs, hDC, pt);
pt = MAKEPOINT(l Pa ram) ;
/* Switch to DASHED pen for next draw rect. * /
SelectObject(hDC, hPenl;
DrawDraggi ngRect(hs, hDC, pt);
ReleaseDC(hWnd, hDC);
break;

case MODIFYING :
hDC = GetDC(hWndl ;
/* Draw in XOR mode with DASHED pen . * /
SetROP2 (hDC, R2_NOTXORPEN) ;
SelectObject(hDC, hPen) ;
SelectObject(hDC, hRgnl;
/* Erase last rect. * /
DrawDraggi ngRect(hs, hDC, pt l;
pt = MAKE POINT(] Paraml;
/* Draw new rect. * /
DrawDraggingRect(hs, hDC, pt):
ReleaseDC(hWnd, hDC);
break;

} /* switch (state) */
break; /* WM_MOUSEMOVE *./

case WM_LBUTTONUP:
if (state==MODIFYING 11 state==START_MODIFYING)

{
Del eteObj ect(hPen);
De 1 eteObject(hRgn l;
UpdateScale(hs, pt);
/* Set Cursor for hot spot or Arrow. */
SetCursor(HCursor[Pt i nHotSpot(&Ta rgetRect,

MAKEPOI NT(1 Pa ram) l] l;
/* RePaint only if modification started . */
if (state == MODIFYING)

InvalidateRect(hWnd, NULL, TRUE):
state = WAITING;
}

break; /* WM_LBUTTONUP */

case WM_LBUTTONDBLCLK:
if (state == WAITING &&

PtlnRect(&TargetRect , MAKEPOINT(l Pa ram)))
{
UpdateScale(ZOOM_IN, pt);
InvalidateRect(hWnd, NULL, TRUE);
}

break; /* WM_LBUTTONDBLCLK * /

case WM_RBUTTONDBLCLK:
if (state == WAITING &&

PtinRect(&TargetRect, MAKEPOINT(l Pa ram)))
{

November 1994

given a 640x480 screen, you might decide to map WPG
coordinate (O,O) to Windows coordinate (0,480) and WPG
coordinate (10800,7800) to Windows coordinate (640,0), as
shown in Figure 1. Two equations arise from associating
each x with its corresponding x':

0 = scaleX * 0 + offsX
640 = scaleX * 10800 + offsX

Solving these equations results in ofjsX = o and scaleX =
640/10800 = 0.059. After similar calculations in y, the spe
cific scale transformation can be written down:

x' = 0.059 * X

y' = -0.061 * y + 480

UpdateSca 1 e (ZOOM_OUT, pt);
Inv al idateRect(hWnd, NULL, TRUE);
}

break; /* WM_RBUTTONDBLCLK */
} /* switch (message)*/

BYTE LOCAL DrawWPGRecord(HDC hDC , LPBYTE FAR *p,
SCALE sc)

I*

*I
{

USE: Decipher and draw WPG record.
IN: hDC = handle to DC in which to draw

*p = ptr to start of WPG record
sc = SCALE struct to use in drawing record

OUT: *p = ptr to start of next record
RET: Return record type.
NOTE: p is a ptr to a ptr to the start of the WPG
record. The ptr scans thru the record and ends by
pointing to the next record . The actual ptr. main
tained by the caller, is updated as well (this is
why we need a ptr to a ptr) . Note that:

p = ptr to ptr
*p = ptr

**p = data

BYTE rec Type;
DWORD rec Len;

/* WPG record type * /
/* WPG record 1 ength, as DWORD * /

/* Get RecordType. advance ptr . * /
recType = *(*pl++:

recLen = GetRecordLength(p);

/* Process record. Each type of record being handled
* appears as a case constant; records not listed are
* ignored and jumped over .
*!

switch(rec Type)
{
case WPG_FILLATTR:

SetBrush(hDC, *p, SET_MID);
break;

case WPG_LINEATTR:
SetPen(hDC, *p. SET_MID);
break;

case WPG_LINE:
DrawLine(hDC , *p, SC);
break ;

case WPG_POLYLINE:
case WPG_POLYGON:

November 1994

The scale factors 0.059 and -0.061 indicate that the
original coordinates are shrunk to about 6% of their origi
nal values in order to fit on the screen; the minus sign
reverses the sense of y due to the different placement of
the origin. An offset of 480 must then be added to the y
coordinate to get the image on the screen. SHOWWPG's
function Ca 7 cSca 7 ePa rms () calculates the scale parameters
based on the current target rectangle, much as in this ex
ample, except that any target rectangle may be used. The
term ·scale parameters· includes scale factor and offset for
both X and y.

A straight line between (x7,y7) and (x2,y2) in WPG
space is rendered by first scaling the two points and then
drawing the line between the scaled points with Windows·
HoveTo() and LineTo(). For a polyline, first scale all the co
ordinates and then pass the scaled points to Windows·

DrawPoly(hDC. *p. sc. recType);
break;

case WPG_ELLIPSE:
DrawEll i pse (hDC. *p , sc);
break :

} /* switch */

/* Advance ptr to next record for caller. */
*p += rec Len;

return(recType) ;

/nstl/Bgence™
Nlake The Best First Impression!

Spend your time finishing your product, not its installation,
with the best Windows installation builder on the mari<et.
You'll create your install in minutes with its object oriented
installation factory TM . Define install operations and order
with property inspectors, not some bad language

Its the only install that automates file compression and disk
layout with a drag and drop interface that leaves its com
petitors far behind. You get all the features you want and it
only uses ~80KB of disk space! Its yours for a limited time
at a special price, because you really shouldn't be using an
install that isn't as good as your product

..- Buy before 10-1-94 for a FREE Chicago Upgrade! .

..- Supports multiple file groups, partial and un-install.

..- File compression, splitting, and version checking .
T System file, .INI, CONFIG.SYS and registry support.
..- Progman groups, readme viewer and billboards .
..- Gradient, bitmap or custom background window.
T International support and many more features.
..- Royalty-free distribution.
T Mastercard and Visa accepted .

$99.00 In September
Order Now 1-800- 494- 0550 ~

~

22845 NE 8th Street Suite 314
Redmond, WA 98053-7299
Phone 206-836-01 l l
FAX: 206-868-0550

Instance
Co;porabon

• Request Reader Service #313 •

Windows/DOS Developer's Journal - Page 37

PolyUne(). This is the magical core of vector graphics -
the scaled image looks the same as the original!

The Target Rectangle
In general, the target for display is not the entire

screen, but a rectangle smaller than the screen, resizable
by the user. This target rectangle is a key global variable,
called TargetRect, in SHOWWPG. The user resizes the tar
get rectangle by dragging little black boxes at the corners
and sides of the rectangle, as is done in WordPerfect, or
by double-clicking for zooms (left double-click to zoom in,
right double-click to zoom out). After the user resizes the
target rectangle, the image within the rectangle is scaled,
with the scaling transformation mapping WPG space into
the target rectangle. The scaling transformation is devel
oped as in the example above, except that the WPG file
maps to the target rectangle only, rather than to the en
tire screen. After the scaling transformation is applied,
PlayWPGFile() renders the scaled image. The current scale
transformation, depending on TargetRect, is stored in an
other key global structure, Scale, which holds the scale
factors and offsets.

The function InitScaleParms() calculates an image's in
itial target rectangle when the file is loaded. The image's
WPG space size, together with reasonable margins, is used

W/DDJ SDK Annotation #17

Windows 3.1 SOK

WM_ENTERI OLE {2.x)
c§
WM_ENTERIDLE

to calculate a target rectangle fitting in the middle of the
client area. From that point, the user adjusts the target
rectangle interactively, with SHOWWPG updating scale pa
rameters at each adjustment, until a new file is loaded
and InitSca leParms() starts the cycle anew.

Reading a WPG File into Memory
SHOWWPG provides a common dialog box that lets the

user choose WPG files to render. The program calls GlobalAl
loc() for a memory block sufficient to hold the entire file:

hMem = GlobalAlloc(fileSize);

The memory block remains valid, continuing to hold the
file, until another file is chosen. The file data is not
changed, but serves as the image archive for rendering.
Scaled data (for indeterminately sized polylines, for exam
ple) is stored in supplementary memory blocks. Iterated
scaling (scaling already scaled data) can corrupt an image,
so I always want to be one step away from the original.

Choosing a new image displaces any existing image, so
the code frees the current hMem (with GlobalFree()) before
generating a new hMem for the new image. Failing to free
unused memory handles is a dire error in Windows, since
unfreed blocks continue to occupy the global memory

heap, reducing the amount of mem
ory available to all applications for
the rest of the Windows session.

Interactive Aspects

fwSource = wPar am;
hwndDlg = (HWND) LOWORD (lPa r am) ;

/ * idle-source
/ * handle of d

The WM_ENTERIDLE message informs an appli cati on's main
window procedure that a modal dialog box or a menu is entering an
idle state. A modal dialo box or menu enters an idle state wh en no

After a WPG file has been loaded
into memory, the user can resize or
translate the target rectangle by
dragging the little black box knobs
on its corners and edges or by dou
ble-clicking to zoom. Figure 2 shows
how the program displays a WPG
file. SHOWWPG takes note when the
cursor is over one of the knobs, ad
justing the cursor shape accordingly.
The upper right knob, for example, is
linked to the ·northeast - southwest·
arrow cursor, the same one Windows
itself uses to signal the availability of
resizing when a cursor passes over
the upper right corner of a window.
The program responds to a left but
ton down in one of the knobs by in
itiating a drag. The eight knobs are
called hot spots for this reason. The
target rectangle itself is the ninth hot
spot; it is linked to the arrow cross
and to translation when dragging en
sues. The nine hot spots are deter
mined by the target rectangle, with
function PtlnHotSpot() returning the in
dex of the hot spot a point is in, if any.

= Annotate

8_nnotation:

The documentation says that this messsage gels :,
sent to your application's "main window"_ In
fact, the dialog sends the WM_ENTERIDLE -
message lo its own parent window, which may
or may not happen lo be your application's main
window.

[Add this annotation lo your own online API help
file by pressing All-E -AJ

Page 38 - Windows/DOS Developer's Journal

'+

~ave

II Cancel I

J !!_elete !
U Copy I

Paste

The drags are managed by func
tion Modify(), a tool sensitive to the

November 1994

stream of mouse events and their meaning. Pressing the
left mouse button down on the knob at the top left of
TargetRect, for example, begins the top left drag, where
the top left corner is moved but the opposite right bottom
corner is anchored at its original location. The corner
drags affect both scale factors since both dimensions of
TargetRect are changed. Toe top-middle drag, initiated by
pressing the left button down on the top middle knob,
causes only the top edge of TargetRect to move. In this
case, the x scale factor remains unchanged, while the y
scale factor will change depending on the top edge's posi
tion at the end of the drag. Translating is also available by
dragging TargetRect itself; in this case only the offsets and
not the scale factors are affected. There are nine different
kinds of drag, each one a different modification. Double
clicking triggers automatic zooms without any dragging.
When a drag or zoom is done, both the target rectangle
and scaling transformation must be updated.

The drags have much in common. All are initiated by
the user's pressing the left mouse button down in a hot
spot; all are in progress as the user moves the mouse, or
drags; and all need to update the global structures Tar
getRect and Scale when the drag is done. The common
functionality calls for a single function to manage all nine
drags - function Modify(). This way only one block of
code would need to be rewritten to change the way drags
work - perhaps implementing the right mouse button or
shift-drag (dragging with the shift key down).

1Lockeb into olb
......... or a;;;;;ui,~IC?

Wish Your Software Was In
C?

Then Don't Re-Invent the Wheel !
Automatically translate your code into readable

and maintainable C with
PASCAL and BASIC to C Translators

Available for most popular variants
eg. Turbo Pascal, VAX Pascal/Basic, Microsoft Pascal/Basic

For more information call now!
Technosol't (US) Technosoft (Europe)

PO Box 8210 Enterprise House
Rockford, IL 61126-8210 Cherry Orchard Lane

Phone:815-397-3214 Salisbury, SP2 7LD

~-----"= I ·~-
- '\ - ~---: - ~'"'l ~ VISA -· ~ - Ma1iliCard

- AD Regist=d Thule Mam Aclmowlcdgcd ;

• Request Reader Service #253 •
November 1994

Listing 1 continued

void LOCAL InitScaleParms(HANOLE hMem, LPSCALE lps,
LPRECT 1 pr)

I*
USE: I ni ti a 1 i ze target rect and seal e parameters .

hHem = handle to memory containing WPG data .
lps = ptr to scale parameters structure

*I
{

IN:
OUT :

NOTE:

lpr = ptr to target rectangle : region on the
screen into which image is mapped.

Uses global ClientRect, sets global WPGsp.

LP BYTE 1 pWPG; /* ptr to WPG data * /
double scaleX; /* X scale factor */
double scaleY; /* Y scale factor*/
int top; /* top of target rect if loose fit · y */
int left; /* left of target rect if loose fit • x */

/* Generate ptr to WPG data. */
1 pWPG = (LP BYTE) Gl oba 1 Lock(hMem);

/* If find WPG_STARTl as first record, use for WPG
* space; else use defaults set at initialization.
*I
if (*(lpWPG + WPG_OFFS_FIRSTREC) == WPG_STARTll

WPGsp = *((LPSIZE)(1 pWPG + WPG_OFFS_WPGSIZE)) ;

/* Unlock memory handle . */
Gl oba 1 Un 1 ock(hMem);

/* Cale scale factors in both dimensions. */
scaleX = (double) ClientRect.right / WPGsp.cx;

RELEASE V21 IO

For SDK & Visual Basic
3D Chart
- Over 30 of 2D & 3D chart styles
- Rotation & scrolling
- Supports printing & clipboard

Toolbox
- Creates buttons from bitmaps

or text
- Supports scrolling
- 3D buttons w/ color customization
• Single/multiple/no-state button

groups

Ribbon
- 3D items with color customization
- Supports combobox, text & buttons

Field Validallon
- Validates date, time, number fields

& "PIG" statements

Meter
- Creates vertical horizontal, &

circular gauges with choice of
needle or color bar as indicators

- Linear & logarithmic scales

Table
- Column & row split windows
- Multiple row & column selections
- Check boxes/radio buttons/bitmaps/
editable/combobox column

• Input validation
- Color customization

Status Bar
- Auto scrolled text
- Stretchable field width
- Colored progress bar
- Show date, time, & key states

""' titt.t~:@murrg;

Source code for the
Borland 3D Chart is available!

Split windows

Consulting &

el -.~•
Q r.i·

Contract Programming Available

Free Demo from BBS.
No Royalties. 30-day MBG.
Optional with source code.

Tel : (408) 263-9881
Fax: (408) 263-9883
BBS: (408) 263-0892

Kansmen Corporation
P. O. Box 360070
Milpitas, California 95036
USA

• Request Reader Service #247 •
Windows/DOS Developer's Journal - Page 39

Modify() implements a state table to respond appropri
ately to sequences of mouse events. A left button down
(Windows message WM_LBUTTONDOW!t, on a hot spot triggers a
state transition from WAITING to START_MODIFYING, causing
drag initialization. As the drag progresses, sending a
stream of WM_MOUSEMOVEs to Modify(), the state changes to
MODIFYING, in which the dashed target rectangle on screen
is updated continuously as the mouse moves. Finally,
when the left button is released (signaled by receipt of
message WM_LBUTTONU/1, the entire image is resized accord
ing to the new target rectangle, and the state reverts to
WAITING, the quiescent state between drags. State tables are
a way to grasp complex interactive sequences like this.
Dragging represents a circuit through the state table,

WAITING-> START_MODIFYING ->MODIFYING-> WAITING

with state transitions triggered by receipt of a certain mes
sage while in a certain state.

Details about each kind of drag are relegated to helper
functions like DrawDraggingRect(), which is called in states
START_MODIFYING and MODIFYING to redraw the dashed target
rectangle as it is being dragged. Another helper is UpdateS
cale(), which updates TargetRect and Scale as appropriate
when the drag is finished. UpdateScale() consists mainly of
a switch updating TargetRect appropriately depending on
the type of modification. A top left drag, for example, be
gins when Modify() learns that the drag started with the

Orbits correspond to J=constant contours

Q

"

-, ~
"
Q
ti

:;

~

J=l - (r2 - 1)2 + iocos(0)

Version 7.0 For DOS, DOS '286, OS/2, Windows and Windows NT
•• High resolution vector graphics
•• 248 colors for all pl ot elements
.. Log plots to any base

3-D su rfaces shaded to level contours
• Pr inter output limited only by si ze of

output medium
.. New - pa tch plots , box and whisker

plo ts , stai rcase plots

Convert high-resolution output to
PIG, GEM, HPGL, HPGL2, CGM ,
SCODL, TIFF, Postscript (Levels 1
and 2) , Tektro ni x 4105 formats ,
and GUI metaf iles

•• Create co lor separations
Statistical an d smoothing funct ions
Use any of your Postscr ipt or Tru e
type fonts in GraphiC fo r only $59

GraphiC ls an environment-Independent C-llbrary that allows
you to create every sort of scientific and engineering plot. No
special knowledge Is required to program In GUI environments.

Scientific Endeavors Corporation
508 N. Kentucky St. , Kingston , TN 37763

(8 00) 998-1571; (6 15) 376-4146 ; FA X :(6 15) 376-1571

• Request Reader Service #204 •
November 1994

Listing 1 continued

sea 1 eY = (doub 1 e) Cl i entRect . bottom / WPGsp. cy;

/* Fit target rect into c 1 i ent rectangle with same
* aspect ratio as WPG space, allowing for margins.
*!

if (scaleX < scaleY)
{
/* TargetRect fits snugly left and right, with
* extra space top and bottom.
*I

scaleX *= (1.0 - 2.0 * INIT_MARGIN);
/* Ca le TargetRect with margin based on INIT_MARGIN
* on left/right, margin = top units on top/bottom
*!

top = (ClientRect.bottom - scaleX * WPGsp.cy) / 2;
lpr->left = ClientRect.right * INIT_MARGIN ;
lpr->top = top;
lpr->right = ClientRect.right * (1.0 -INIT_MARGIN);
1 pr- >bottom = Cl i entRect. bottom - t op;
/* Cale scale parms based on this TargetRect.*/
CalcScaleParms(WPGsp, *lpr, lps);
}

else
{
/* Target rect fits snugly top and bottom, with
* extra space left and right .
*I

scaleY *= (1.0 - 2.0 * INIT_MARGIN);
/* Cale TargetRect with margin based on INIT_MARGIN
* on top/bottom, margin = left units on left/right
*I

left= (ClientRect.right - scaleY * WPGsp.cx) / 2;

Based on ZylNDEX-leader from the beginning
in PC text retrieval

• Search 1 GB in Less Than 5 Seconds
• Up to 50 Million Documents, 10 GB Total Per Index
• Powerful Searches: Word, Phrase, Proximity, Boolean,

Wild Cards and More
• Works Directly with MS Word, WordPerfect, AmiPro,

dBASE, ASCII, and Others

Ideal for use with high-level application development
environments such as Visual Basic, ToolBaok,

KnowledgePro, and ObjectVision.

Windows, DOS, and NT

libraries available $3,995

Call for Specs and Demo. -
~~ 7k} /~, /fij k~f,,L';,:;~~·,!:-t~~~/

i;;f.'J;;;;.·;~jr;,;1 ::-;.:i-;, ., 11,c.

100 Lexington Drive• Buffalo Grove, IL 60089
Phone, /708) 459-8000 • Fax {708) 459-8054

• Request Reader Service #111 •
Windows/DOS Developer's Journal - Page 41

Listing 1 continued
pt) to adjust TargetRect appropriately, where hs is the hot
spot variable holding the type of modification and pt is
the point at which the user released the left mouse but
ton. This is the new top left corner of TargetRect and is all
the information needed to recalculate TargetRect. Once the
switch has determined the new TargetRect, UpdateScale()
calculates the new scale parameters and stores them in
global structure Scale.

1 pr->top = Cl i entRect. bottom * INIT_MARGIN;
lpr->left = left;

. lpr->bottom =ClientRect .bottom * (1.0 -INIT_MARGIN);
lpr->right = ClientRect . right - left;
/* Cale scale parms based on this TargetRect. */
CalcScaleParms(WPGsp, *lpr, lps);
)

SHOWWPG as a Graphics Filter
void LOCAL CalcScaleParms(SIZE wpgsp, RECT tr,

LPSCALE 1 ps)
Writing GDI calls to a screen DC (display context) dis

plays the image, while writing the GDI calls to a metafile
DC creates a metafile. A Windows metafile is a static list
of GDI calls which can be saved as a disk file or, as in
SHOWWPG, copied to the clipboard. One of Pl ayWPGFil e()'s
parameters is an hDC, or handle to a display context; this is
the sole determinant of whether the image is displayed or
translated to a metafile. Once the metafile has been trans
ferred to the clipboard, you have truly captured it in the
Windows system, since any Windows application capable
of pasting metafiles from the clipboard can now retrieve
the image. The image can be manipulated or added to
within the retrieving program, and resaved in the native
format of the program or any other format the program
can export to. SHOWWPG has filtered the WPG graphic
into Windows. •

!*
USE: Calculate scale parameters.
IN: wpgsp = WPG space size, x =•width, y = height

tr = target rect on screen where image goes
OUT :

*!
lps = ptr to struct with scale parameters

{
/* Scale equation solutions in x. */
lps->scaleX = (double) (tr.right - tr.left)/wpgsp.cx;
lps->offsX = tr.left ;

/* Scale equation solutions in y. */
lps ->scaleY = (double) (tr .top - tr.bottom)/wpgsp.cy;
lps ->offsY = tr.bottom;

user's depressing the left mouse button on the top left
knob, or hot spot. When the user later releases the left
mouse button, after dragging, Modify() calls UpdateScale(hs,

• Can You Browse
Your Program's Files?

I

{
{CL(l J :NA("lnput") :CO (" in box"} ,

I
[OS("D: lannua 194 . wpd"J : CL(lOOJ : NA("Annua I Report"}: C0("1994"J]
I I D11 * 478* /l : CLJ 2001 : NAJ"Quarter I y Report" I : COi "Ql "I

1 1 111 1 I f , 1 .,

/Ul(J :CL(201J :NA("Sa les -- Easte rn"} :CO ("not yet avai lable"J]

J

I
{CL (2) :NA("Output") :CO("out box"}
J [OS("D: l annua 195 . wpd"J : CL(l 00} : NA("Annuo I Repo r t") : CO("l 995"} J

,t _ ,_ .,...

The Gamelon Browser. One of the productivity tools included with
Gamelon, the object-based fiJe API for developers. There's nothing
like Gamelon. Create free -form or structured multi-platform files
easily and save time and money in the process. Available now, single
-user, royalty-free. Windows 3.1: $395. OS/2 or Windows NT: $495.
C and C++

gam~lon ,.

J
Ii

'
J

_j

Menai Corporation File I/0 Library
1010 El Camino Real, Suite 370, Menlo Park, California 94025
1.800.GAMELON . FAX 415.853.6453 • BBS 415.617.5726 • info@menai.com

• Request Reader Service #102 •
Page 42 - Windows/DOS Developer's Journal

Notice
To Our Subscribers

Occasionally,
Windows I DOS Developer's
Journal makes its mailing
list available to vendors of
products we think our
readers will find interesting.
Current subscribers receive
free information in the mail

If you prefer that your name
not be used in these
mailings , please let us
know. Just copy or clip this
form and send it with your
name and address to:

Windows~DOS a DEVELOPER'S JOURNAL

Suite 200
1601 West 23rd Street
Lawrence, KS 66046 USA

November 1994

