
WINDOWS3

Programming Windows
Using State Tables
T

his article presents a Windows­
based program called "Draw"
that uses state tables to imp. le­
ment interactive drawing tools
in an economical , consistent

fashion. Draw renders four kinds of ge­
ometric figures: rectangles, rounded rect­
angles, ellipses, and lines. Each type is
associated with a drawing tool that's ac­
cessed by means of a menu choice (see
Figure 1). Our implementation uses state
tables to encapsulate program control
flow in a single data structure (an array
of pointers to functions). Using this tech­
nique, you can easily extend the pro­
gram to support other kinds of geomet­
ric figures, as long as the user interaction
for the new types is similar to the types
described here.

Before discussing the details of our
implementation, it is useful to review
some of the basic concepts behind Win­
dows programs.

Event-Driven Programming
As more and more programmers are
finding out, writing programs for Micro­
soft Windows and other event-
driven GUis is very different

This data structure

can simplify the

structure of

interactive

graphics programs

Michael A. Bertrand &
William R. Welch

the pattern of interaction of a real-world
user driving an interactive graphics ap­
plication: Any one event, such as a
mouse movement, is about as likely to
occur as any other (say, a keystroke or
a menu choice).

Using window procedures (called

from writing traditional DOS
programs. In a Windows pro­
gram, your program does not
have a single line of control,
flowing from beginning to mid­
dle to end. Rather, it responds
to all manner of events (or, in
Windows parlance, messages)
that are sent by the system to
all applications, at arbitrary or
unpredictable times. This
event-driven structure follows

·('
·.... ·1, .. /<S>
'i.s, -t,0

ct ~ ... (t
. ~(SI ,{'~• '~~0

Wndprocs) , your application is able to
respond to all of these events or mes­
sages as they occur. This is not merely
a suggestion, but an implementation re­
quirement. Each type of window in a
Microsoft Windows application must
have a procedure associated with it that
receives all messages sent by environ­
ment to that class of window. The mes­
sages correspond to external events
(mouse movements, mouse clicks,
keystrokes) as well as internal events
(for example, the message that asks the
application to redraw its screen display,
or a message sent by another applica­
tion, and so on).

With this bit of background, we can
now discuss the Draw program. Draw
consists of a single header file, Draw.h
(Listing One, page 45), and a single C­
language source file , Draw.c (Listing
Two, page 45). There is also a makefile
(Listing Three, page 46) and two files
required by Windows: the definition file,
Draw.def (Listing Four, page 46), and
the resource file, Draw.re (Listing Five,
page 46).

Mike teaches mathematics and
programming at Madison Area
Technical Colkge, Madison, W1
53 704. Bill is a freelance writ­
er and programmer who holds
a Ph.D. in biological science.
He can be reached at 201 Vir­
ginia Terrace, Madison, W1
53705.

&(SI -t'°+. ··"~ .. ,·.·Pt>->. ~­-t.o+ '~,() .. "'~.o
'~).. . i,1--15 "'--R~ '<•~. ~~- 0~. • •

Suppl.ement to Dr. Dobb's Journal, December 1991 39

WINDOWS 3

The Main Window Procedure
In general, every application has a main
window and an associated main win­
dow procedure. If the application has
other kinds of windows (known as child
windows), each of these kinds will have
a window procedure defined for it as
well. Draw creates only one kind of
window, so it has only a single window
procedure, WndProc.

The function WndProc contains code
to respond to Windows messages such
as selecting a drawing tool from the
menu, responding to mouse events, and
repainting the window when it is
moved or resized. WndProc passes
mouse-button and mouse-move events
to the function Tool, which manages
drawing. Tool provides a template for
interactive drawing tools and is the re­
al heart of Draw.

When using Draw, you interactively
display geometric figures by invoking
three mouse events: left-button-down,
mouse-move, and left-button-up. These
three events produce the Windows mes­
sages WM_LBUTTONDOWN, WM_
MOUSEMOVE, and WM_LBUTTONUP,
respectively. As is common in Windows
programs, Tool uses these messages as
case constants in a switch statement.
With the rectangle tool, for example,
you first depress the left mouse button
(WM_LBUTTONDOWN) to define the
x and y coordinates (xl and yl) of the
initial corner of the figure. Then, as you
move the mouse without releasing the
button (dragging the cursor and pro­
ducing a series of WM_MOUSEMOVEs),
the program repeatedly erases and re­
draws the rectangle while the current
mouse position defines the x and y co­
ordinates (x2 and y2) of the rectangle
corner opposite the initial corner. The
final figure appears when you release
the left mouse button (WM_LBUT­
TONUP).

A Simplifying Technique
Draw's four tools require a minimal
amount of code. The key to this econo-

Draw uses the

standard Windows

raster operation

codes to "rubber

band" a figure as

the mouse cursor is

dragged

my is the data structure DrawFig, which
is an array of pointers to functions -
one for each tool. All four tools work
in exactly the same way (that is, left­
button-down, mouse-move, left-button­
up), and their functions have the same
parameters and return a value of the
same type. In choosing a tool through
the menu, the program sets the value
of the DrawFig index, iFigType. This
value, in turn, determines which func­
tion is pointed to by the DrawFig array
and used for the actual drawing in Tool.

Two of the functions that the Draw­
Fig array points to, Rectangle and El­
lipse, are standard Windows functions,
that is , part of the native Application
Program Interface (API). The other two
functions that the DrawFig array points
to, DrawRoundRect and DrawLine, are
our own. This is because the native
Windows functions to draw rounded
rectangles (RoundRect) and lines (Move­
To and LineTo) have different parame­
ters than Rectangle and Ellipse. To deal
with this difference , we wrote the
DrawRoundRect and DrawLine func­
tions. These two have the same pa­
rameters as Rectangle and Ellipse, so all

Mouse Event
System State WM_LBUTTONDOWN WM_MOUSEMOVE WM_LBUTTONUP

WAITING
DRAWING

DRAWING
WAITING

Table 1 : State table shows the changes from one system state to another (Waiting
to Drawing and back), as triggered by the mouse events (left-button-down, move,
left-button-up).

Mouse Event

four functions can be included in the
same array of pointers to functions, the
DrawFig array.

This scheme of using the DrawFig ar­
ray to point to tool functions that use
the same three mouse events to draw
figures has an important ramification:
Other similarly behaving tools can be
added to Draw by simply including
pointers to the appropriate functions in
the list of the DrawFig array initializers
and including them in the menu. Addi­
tions might, for example, be tools for
isosceles triangles, regular polygons, and
parabolic segments.

Storing figure Coordinates
In any Windows application, whenev­
er the user moves a window or changes
its size, Windows sends a WM_PAINT
message to the application to erase and
redisplay the entire output area of the
window. Any figures produced by Draw
will be erased, and Draw must redraw
them if they are to stay on the screen
as the location or size of the window is
changed.

This restoration of the window con­
tents can be accomplished only if Draw
in some way saves the figures. This it
does, in the externally defined structure
faList, which is an array of structures of
type FIGURE. Each FIGURE in jaList
contains a field (named iType) that in­
dicates the type of figure (rectangle,
rounded rectangle, ellipse, or line) and
a structure (rsCoord) that contains the
x and y coordinates of the two end­
points which define the location of the
figure. Values for these variables are as­
signed - a new figure is saved- in this
case block WM_LBUTTONUP of func­
tion Tool. Whenever WndProc gets a
WM_PAINT message, it traverses jaList,
a simple graphics database, to restore
the screen. The array jaListis character­
istic 'of the graphics programming ap­
proach known as vector-based or dis­
play-list oriented approach . (This
technique is also sometimes loosely
called object-oriented.) In this approach,
a geometric figure is represented in the
database, or display list, by a set of
drawing commands and endpoint co­
ordinates that determine how the list is
traversed to display the figures. In Draw,
the drawing command in the list is the
type of figure (iType); more elaborate
systems include attributes such as line
width and line color.

System State WM_LBUTTONDOWN WM_MOUSEMOVE WM_LBUTTONUP WM_RBUTTONDOWN WM_RBUHONUP

WAITING
DRAWING
TRANSLATING

DRAWING
WAITING
WAITING

TRANSLATING
DRAWING

Table 2: This state table extends the relationships in Table 1 by adding two mouse events and another system state.

40 SupplRment to Dr. Dobb's Journal, December 1991

WINDOWS3

(continued from page 40)
Rubber Banding Figures

in Tool) to repre­
sent the sys tem
state.

Table 1 shows
Draw's state table .

R.9.unded reclangle
./j;)llpse

!,ine

It shows how the ,o---cA~b•_u_t D_ra_..,_···-~

two system states
(WAITING and
DRAWING) are re-
lated to the three
mouse events
(WM LBUTTON-
D OWN , WM_
MOUSEMOVE ,
WM_LBUITONUP)

I'

Draw uses the standard Windows raster
operation (ROP2) codes in order to
"rubber band" a figure as the mouse
cursor is dragged. This occurs in Tool,
in the case block WM_MOUSEMOVE,
which calls the Windows function Set­
ROP2 with argument R2_NOTXORPEN.
This argument sets the XOR (exclusive
OR) drawing mode. Using the previous
values of x2 and y2, the XOR mode
causes the tool function called by the
DrawFig array to erase the existing fig­
ure. DrawFig calls the tool function
again , using the current values of x2
and y2 to draw the new figure. When
the same figure is drawn twice in the
same place in XOR drawing mode, fig­
ures in the background are left un­
changed. Case WM_LBUTIONUP calls
ROP2with argument R2_COPYPEN, set­
ting the COPY drawing mode. In COPY
mode, the background color fills the in­
terior of the figure, erasing overlapped
portions of any underlying figures.

that DRAW's tools .._ __ ====----=============="

use to display fig- Figure 1 : Sample screen display for DRAWEXE

System State Tables
The concept of "system state" is central
to understanding Draw. It is the current
state of the application that determines
the response of the program to a mouse
event. We use a single variable (iState,

ures. When you
use DRAW, you send a series of mouse
events to Tool. Tool's response to a giv­
en mouse event ,depends not only on
that event, but also on the sequence of
previous events. Tool records this se­
quence of mouse events as transitions
in system state, and the state table doc­
uments these transitions.

To use Table 1, enter at the initial sys­
tem state, WAITING, and read across to
see the effect of mouse events. WM_
MOUSEMOVE and WM_LBUTIONUP
have no effect, but WM_LBUTTON­
DOWN causes a transition to a new sys­
tem state, DRAWING, and sta1ts the tool.

~ ---1DROVER1S PROFESSIONAL TOOLBOX
FOR WINDOWS

Accelerate Windows Development!
Visual Basic

&
OS/2

corning soo

Drover's Professional ToolBox for Windows is the best way to shorten your
Windows 3.0 and 3.1 development schedule. ToolBox is a revolutionary new
collection of tools which make it the perfect companion for both the begmner and
experienced Windows developer.

Shell applications _provide a quick start to writing an application. Then add
some of the over 300 Junctions and 20 new controls included in the DLL, and you
have a professional-quality application at a fraction of the tradional development
time.

The DLL includes functions which provide low-level disk access, background
sound and music, automatic window printing and file manipulation. New controls
include formatted edit classes of all types, an animated picture control, a
SuperButton displaying.both text and graphics, graphical directory tree listings, and
a spreadsheet control with nearly every imaginable feature.

A majority of the C run-time library is converted to far pointers including re­
entrant versions of sprintf and sscanf. ToolBox also includes over 400 pages of
documention with numerous examples to get you started.

ToolBox is a great companion to products like:

• Microsoft C • Actor • SQL Windows • Windows Maker •
ToolBook. Turbo C++

No ROYALTIES. SouRCE CooE ALso AVAILABLE

Accelerate your Windows development for just $345.00

CONTACT YOUR DISTRIBUTOR, OR CALL (614) 944-1291

Prescriptioµ
Software, Inc.

225 Jolliett Road, Bloomingdale, OH 43910
Phone (614) 944-1291 Fax (614) 944-1299

Trademarks are property of their respective holders.

CIRCLE NO. 641 ON READER SERVICE CARD

Reenter the table at the new system
state, DRAWING, and again read across.
Now WM_LBUTIONDOWN and WM_
MOUSEMOVE have no effect, but WM_
LBUTIONUP causes a state transition
back to WAITING, and stops the tool.
Tool responds to only one sequence of
mouse events: WM_LBUTIONDOWN,
WM_MOUSEMOVE, WM_LBUTTONUP.
This sequence is reflected in only one
path through the state table: WAITING
• DRAWING • WAITING.

System state can both determine the
response to a mouse event and be de­
termined by a mouse event. For exam­
ple, in case WM_MOUSEMOVE of Tool,
if iState equals DRAWING, the old fig­
ure is erased and the new one is drawn;
if iState equals WAITING, there is no ef­
fect (break). By contrast, in case WM_
LBUTTONDOWN, if iStateequals WAIT­
ING, iState is changed to DRAWING and
the endpoint coordinates are assigned.

Draw's tools are simple; thus Table 1
is correspondingly simple. Table 2 is a
slightly more involved example that de­
scribes what would happen if two
mouse events, right-button-down (WM_
RBUTIONDOWN) and right-button-up
(WM_RBUTTONUP), were added to
translate (that is, change the location of)
the figure being drawn. In this exam­
ple, when you depress the right button
while drawing, mouse moves translate
the figure without changing its shape.

To use Table 2, enter at the initial sys­
tem state, WAITING, and read across.
WM_LBUTIONDOWN causes a transi­
tion to DRAWING and starts the tool, as
before. WM_LBUTTONUP causes a tran­
sition back to WAITING, as before, and
stops the tool. An intervening WM_
RBUTIONDOWN, however, changes
the state to TRANSLATING. In state
TRANSLATING, WM_MOUSEMOVEs
cause translations rather than rubber
banding. WM.:...RBUTIONUP changes
the state back to DRAWING. You can
alternate between rubber banding (state
DRAWING) and translating (state

42 Supplement to Dr. Do':Jb's Journal, December 1991

WINDOWS3

(continued from page 42)
TRANSLATING) until the final WM_
LBUTTONUP.

case WM_MOUSEMOVE :
switch (iSt ate }

This expanded tool responds to the
mouse-event sequence: WM_LBUT0

TONDOWN, WM_MOUSEMOVE, WM_ 11

RBUTTONDOWN, WM_MOUSEMOVE,
WM_RBUTTONUP, WM_MOUSEMOVE,
WM_LBUTTONUP, and this sequence is
reflected in a path through the state table

{
case WAITING:

/ * Tool not s t arted; nothing t o do. */
break ; /*WAITING*/

case DRAWING :
/ * User is r ubber banding . Erase o~d figure and draw new

figure . Reset statics (x2,y2} to mouse coordinates . */

........ rubber banding code here
break; I* DRAWING* /

as: WAJTING • DRAWING • TRANS­
LATING • DRAWING • WAJTING.

In implementing the state tables, we
coded them as two-dimensional switch­
es, that is, nested switch statements.
More elaborate tables might require an
array-based approach. In Draw, the
mouse event controls the outer switch
statement, and the state variable controls
the inner one. For Table 2, the skeleton
for case WM_MOUSEMOVE is shown in
Example 1. To fully flesh out the exam­
ple, case blocks for WM_RBUTTON­
DOWN and WM_RBUTTONUP would
have to be added to the switch state­
ment that selects from iMessage in Tool.
Also, the state variable iStatewould have
to be changed accordingly.

Table 2 demonstrates that, as per­
missible sequences of mouse events
and consequent system states are
added to a program being developed,
the complexity of the interactions in-

case TRANSLATING:
/ * User is trans l ating. Erase old figure and draw new

figure . Reset statics (xl,yl } and (x2,y2} to translated
values. *I

. translating code here
break; I* TRANSLATING* /

) /* switch (iState } */
break ; /* WM_MOUSEMOVE */

Example 1: The skeleton for case WM_MOUSEMOVE

creases rapidly. The code that describes
these interactions necessarily becomes
equally complex. Poorly managed com­
plexity leads to intractability. State ta­
bles are a way to cut through this com­
plexity. If state tables are first used to
describe the interactions are construct­
ed before the code is written they pro­
vide a guide for writing the code. New
features can be added with only a min­
imal alteration of working code. State

tables become a means of managing
complexity and are therefore a valu­
able aid in writing and documenting
Windows applications that make heavy
use of mouse events.

DDJ

Vote for your favorite feature/artic le
Circle Reader Service No. 18

r•il
l.!!.I

Windows Developers ! ! !

44

Before

Soft.FIELDS 1s

siEdit

siTable

siToolbar

Save TIME &
MONEY with SoftFIELDS™

a set of custom dialog controls for data entry, including:
- A Formatted and Validated edit control supporting Picture,
Date, Time, Long, Double, SOL Money data types.
- A robust Multi - Column caching Listbox, ideal for database
applications. Built in Edit bar. Looks like .Excel.
- A Popup Toolbar control. Includes 36 common bitmaps.
And many more exciting features.

DLLS

P. O. Box 8628 Order: (404) 876-6115
Atlanta, Ga 30306 FAX: (404) 876-0765

$149
Source $449
VISA/MC/COD
30 Day MBG
No Royalties.

SoftWorks International :i
Supports Microsoft C, Borland C++, SDK Dialog Editor
Borland Resource Workshop, WindowsMaker Pro and CASE:W

CIRCLE NO. 645 ON READER SERVICE CARD

Suppkment to Dr. Dobb's Journal, December 1991

WINDOWS 3

Listing One (Text begins on page 39)

/ ***********DRl\\1-1 . H header file for DRAW . C ************************** /
tt defir.e WAITI NG O / * the possible values for var i able iState in */
#defir.e DRAWING l / * Too l () a r e WAITI KG and DRAWING */

I* These constants are the possible va l ues for iMenuChoice , t he variable
* r ecording the user ' s menu choice . The ol d menu choice must be s tored
* so the check mark can be removed from the menu when a new menu choi ce
* i s made . Do not change . */

ltdefir.e rrn~_RECT 100
ltdefir.e IDM_ROUND_RECT 101
#define IrnLELLIPSE 102
#define IDM_LINE 103
#defir.e ID11_ABOUT 104

/* These constants are the possibl e values for iFigType, the var i able
* recording the current FIGURE, as chosen through t he menu . The value 1s
* a lso stored in t he i 'fype field in faList [] and i s used to determine
* which drawing function i s ca H ed upon from DrawFig [] , t he a r ray of
* pointers to functions ; since these values are indices into a_n array,
* s t ar ting at O, they may not be changed . */

#define FT_RECT (IDM_RECT I DM_RECT)
#define FT_ROUND_RECT {IDl-1_ROUND_RECT - IDM_RECT)
#def i ne FT_ELLIPSE (IDM_ELLIPSE IDM_RECT)
#define FT_LINE {IDM_L!NE IDM_RECT)

I* maximum number o f FIGUREs in faList[} */
#def i ne MAX._FIGS 1000

/* FIGURES in f aLis t [} :
typede f s t ruct

rectangle , rounded rectangle , ellipse , line *I

{ i nt i 'fype;
RECT rsCoord ;

) FIGURE ;

/* global vari ables *I
FIGURE faList [MAX_FIGS) ;
int iLis tS i ze ;
HANDLE hins t ;
RECT r Client ;

/ * List of FIGURES * /
I* t ally number of di splayed FIGURES */
I* current instance * /
/ * c l ient area i n scr coords for Cl ipCur sor () */

I* function protot ypes *I
l ong FAR PASCAL WndProc (HV.'ND hWnd , uns igned iMessage , WORD wParam,

LONG lPar am) ;
void l\"EAR PASCAL Tool {HWND hWnd, uns i gned i Hessage, LONG lParam, i nt i Fig'l'ype) ;
BOOL FAR PASCAL DrawRoundRect (HOC hOC , int xl, i nt y l, int x2 , int y2) ;
BOOL FAR PASCAL DrawLine (HOC hOC , int xl , i nt y l, int x2 , int y2) ;
BOOL FAR PASCAL AboutDraw (HWND hDlg, unsigned message, WORD wParam,

LO:'.'i!G l Param) ;
/* DrawFig(] is an a r ray o f pointers to FAR PASCAL functions , each wi th parms
* {HCC, i nt, int , int , int) and r eturni ng BOOL . Note Rectangle() and Ellipse() are
* MS Windows GDI cal l s, whi le DrawRoundRect{) and DrawLine {) are our cal ls . */

BOOL (FAR PASCAL *Dr awFig[4]) (HOC hDC , int xl, i nt yl , int x2, int y2)
= {Rectangle , DrawRoundRect , Ellipse , DrawLine} ;

End Listing One

Listing Two
/ *,;,***** DRAW . C by Mi chael A. Ber t rand and Wi lliam R . We lch . *******/

#incl ude <windows .h>
#incl ude "draw.h~

int PASCAL WinMain(HANDLE hinstance , HANDLE hPrevi nstance , LPSTR lpszCmd.Line ,
i nt nCrrdShow)

! • hinstance
hPrevinstance
l pszCrrdLine
nCmdShow

current instance handle
prevj ous i ns t ance handle
cur rent conunand line
disp]ay either window or icon

•!
stat ic char szAppName [] "Draw";
stat ic char szlconName [] "Draw Icon " ;
static char szMenuName [} "DrawMenu " ;

HWND
MSG
WNOCLASS

hWnd;
msg ;
WC;

I* handle to WinMa in ' s window */
/ * message dispached t o window * /
/ * for registering window *I

/ * Save instance hand::_e i n global var so can use for "About" dia l og box . *I
hlns t = hinstance ;

if (!hPrevlnstance) I* Register application window c l ass . */
{ '.-IC . s t yle = CS_HREDRAW : CS_ VFEDRAW;

wc . lpfnWndProc = WndProc ; / * functi on to get \•1indow' s messages */
wc .cbCl sExtra = O;
wc. cbWndExtra = 0;
wc . hinstance = hins t ance;
wc . hi con = Loadicon(hins tance , s ziconName);
WC . hCursor = LoadCursor (NULL , IOC_ARR0W);
wc. hbrBackground = GetStock0bj ect (WHITE_BRUSH) ;
v,c . lpszMenuName = szHenuName ; I* menu r esource in RC file* /
wc . lpszClassName = szAppName ; / * name used i n call t o CreateWi ndow {) */
i f (!RegisterClass(&wc))

retur n (FALSE) ;
}

I* Initialize specific instance . */
hWnd = Creat eWindow(s zAppName , /* window class */

szAppName, I* window capt i on */
WS_0VERLAPPEDWI NOOW , /* normal window style */
CW_USEDEFAULT , I* ini t ial x-pos ition *I
·cw_USEDEFAULT , / * init i a l y-position *I
O'11_USEDEFAULT, /* initial x-size */
Cv.1_USEDEF.i\ULT, /* i nit i al y - size *I
NULL, / * parent wind0\·1 hand l e *I
NULL , / * window menu handle *I
hinstance, I* pr ogr am instance handle */
NULL) ; I* create parameters *I

Supplement to Dr. Dobb 's Journal, December 1991

ShowWindow(hWnd, nCrrrlShow); I* display the window */
UpdateWindow(hWnd) ; / * update c l ient area; send W11_PAINT */

/* Read msgs from app que and dispatch them to appropriate win function.
* Continues un t il GetMessage() returns NULL when it receives WM_QUIT . */

while {GetMessage (&msg, NULL , NULL , NULL))
{ TranslateMessage (&msg}; / * process char input from keyboard *I

DispatchMessage(&msg) ; / * pass message to window function */
)
ret urn (msg . wParam) ;

I ** I
l ong FAR PASCAL WndProc(HWND hWnd,unsigned iMessage, WORD wParam , LONG lParam)

I* IN: hWnd handle to window .
iMessage message type
wParam drawing tool selected from menu (when WM_C0MMAND msg)
l Param mouse coords (x == l oword, y == hiword) *I

static int iMenuChoice = IDM_RECT; I* default menu choice *I
static int iFi gType = FT_RECT ; I* default figure type *I
HOC hDC ; I* mus t generate our own handle to CC to draw *I
HMENU hMenu ; / * handle for drop down menu */
PAINTSTRUCT ps ; / * needed when receive WM_PAINT message *I
int ndx; / * to t raverse faLis t [] when draw i t */
FARPROC lpProcAbout ; / * pointer t o "AboutDraw" function */
POINT pt ; / * for Cl ientToScreen () */

switch (iMessage)
{ case WH_SIZE : /*convert cl i ent coords to scrn coords for ClipCursor ()*/

pt . x = pt.y = O;
ClientToScreen(hWnd, &pt) ;
rClient . left = pt .x;
rClient . top = pt . y;
pt . x = LOWORD (lParam) ;
pt . y = HIWORD{lParam) ;
ClientToScreen(hWnd, &pt) ;
r Client . r i ght = pt. x ;
r Cl i ent . bot tom = pt .y ;
break;

case WM_C0MMAND :
switch(wParam)
{ case I DM_RECT:

case I DM_R0UND_RECT :
case IDM_ELLIPSE :
case I DM_LINE :

I* New FI GURE chosen by user uncheck old choice and check new
* choice on menu; reset iMenuCho.!..ce according to user choice. */

hMenu = GetMenu (hWnd} ;
CheckMenuitem (hMenu, iMenuChoice, MF _UNCHECKED) ;
CheckMenuitem(hMenu , iMenuChoice = wParam, MF _CHECKED};
I* User has chosen new FIGURE set iFigType accordingly. *I
iFi gType = i MenuChoice - IDM_RECT;
break ; / * case IDM_LINE */

case IDM_ABOUT :
I* "About" chosen by user call "AboutDraw~ function . *I
l pPr ocAOOut = MakeProcinstance(About Draw , hinst) ;
DialogBox (hinst, "AboutDraw" , hWnd , l pProcAbout) ;
FreeProcl nstance (l pProcAbout) ;
break ; I* IDM_AB0UT */

) I* swi tch(wParam) */
break ; I* wt-1_C0MMAND *I

case WM_LBUTTONOOWN:
case WM_M0USEM0VE :
case WM LBUTT0NUP:

/ * Matise event s passed on t o Tool () for processing . *I
Tool (hWnd , iMessage , lParam, i FigType) ;
break ; I* WM_LBUTI'ONOOWN . *I

case WM_PAI NT :
/* Repai nt window when resized . *I
hoc = BeginPaint (hWnd, &ps);
I* Draw lis t of FIGUREs . */
fo r (ndx = O; ndx < iListSize ; ndx++)

Drawfi g[faList [ndx) . i'fype) (hOC, faList [ndx) . rsCoord . left,
faList (ndx] . rsCoord . top ,
faList [ndx] . rsCoord . right ,
faLi st [ndx] . rsCoord .bottom) ;

EndPaint (hWnd, &ps) ;
break ; ! • WM_PAINT • I

case \'IM_DESTR0Y ;
I* Destroy window when applicat ion terminated . *I
Pos t Qui t Message(O) ;
break ; / * WM_DESTR0Y *I

default :
re turn {DefWindowProc (hWnd, iMessage, wParam, lPar am)) ;

} / * switch{iMessage) *I
r eturn (OL);

! ** I
void NEAR PASCAL Tool (HWND hWnd , unsigned iMessage , LONG lParam, int iFigType)

I* Process mouse event and draw .
* IN : hWnd handle t o window

iHessage mouse event {WM_LBUTI'ONIDWN , W11_M0USEM0VE , WM_LBUTI'ONUP)
l Param mouse coords (x == loword, y == hiword)

* I
stat i c int xl , yl ;
s tat ic int x2, y2 ;
stat ic int iState ;
HOC hOC ;
swi tch (i Message)

/* coordinates of button-do\.fil point */
/ * coordinates of mouse */
/* WAITING or DRAWING */
/* must generate our O\.'ffi handle to OC to draw */

{ case WM_LBU'ITONOOWN :
I* Protect array from overflow
if {iLis t Size == MAX_ FIGS)
{ MessageBox (hWnd, "Fi gure array

break; I* WM_LBUTTONOOWN *I

if array full, notify and out . */

full", "Note ", MB_ICONEXCLAl-1ATION:MB_OK);

I* If not dr awi ng, rese t iState and s t ore but t on-down point . */
if (iState == WAITI NG)
{ ClipCursor (&rClient);

::.state ::: DRAWING;
xl = x 2 = W dORD I lPar am) ;
y l = y2 = HI WORD I lParam) ;

/ * restri ct cursor * /
/ * starting drag */
/ * store user point in statics */

(continued on page 46)

45

WINDOWS 3

Listing Three (Listing continued, text begins on page 39.J

}

)

break ; I* WM_LBUTI'ONIOWN *I
case WM_MOUSEMOVE :

/* If drawing , erase old figure and draw new one at mouse . */
if (iState == DRAWI NG)
(hOC = Ge tOC(hwnd) ;

}

SetROP2 (hOC, R2_NOTXORPEN) ;
DrawFig(iFig'fype] (hOC , xl, yl, x2, y2);
x2 = LOWORD(!Pararn);
y2 = HIWORD(!Pararn) ;
DrawFig[iFigType) (hOC , xl , yl, x2, y2);
Rel easeoc (hWnd, hOC);

I* draw in XOR *I
I* erase old */
I* get 2nd user pt */

/ * draw new */

break; I* WM_MOUSEMOVE *I
case WM_LBU'ITONUP :

/* If drawing, write in COPY mode and store in faList[J . */
if (i State == DRAWING}
{ Cl i pCursor (NULL) ; / * no longer restr ict cursor */

iState = WAITING ; I* ending draw */
hOC = GetOC (hWnd) ;
SetROP2 (hOC, R2 _COPYPEN); I'!- COPY pen for f i nal FIGURE *I
DrawFig [iFigType] (hOC , xl, yl, x2, y2); /* draw FIGURE */
ReleaseOC (hWnd, hOC) ;
faList(iListSize] . iType = iFigType; /* put FIGURE in faList[] */
f a Li st (iListSize] . rsCoord. left = xl ;
faLi st [iListSize] . rsCoord . t op = yl ;
faList (iListSize] . rsCoord . right = x2 ;
faList [iListSize] . rsCoord . bottom = y2 ;
iLi s tSize++ ; / * bump tally, since just added figure to list *I

breaK ; I* WM_LBU'ITONUP */
I* switch(iMessage) *I

! ** I
BOOL FAR PASCAL DrawRoundRect (HOC hOC, int xl, int yl, int x2, int y2)

I* IN : hoc : display context in which to draw
xl, yl coord inates of fir s t cor ner
x2 , y2 coordinates o f second comer

* RET : returns BOOL for consistency with GDI ' s Rectangle() and Ellipse()
* NOTE : GDI's RoundRect() is used to draw, but RoundRect() requires x­

and y-diameters of ellipse used for r ounding . This routine s ets
the corrrnon diame t er equal t o half the smallest side , then calls
RoundRect () . Array DrawFig [] cont ains a pointer to this function .

• I
int dx, dy ;
int diame t er ;

/* sides of r ec tang le, as pos itive values *I
I* di ameter o f circ le us ed for rounding *I

dx = (xl < x2) ? (x2 - xii (xi - x2); /* x-side of rect (posit ive) */
I* y - s ide of rect (posit i ve) */
/* ha lf sroallest side *I

dy = (yl < y2) (y 2 - y l} (yl - y2);
diameter = (dx < dy) ? dx / 2 dy/2 ;
RoundRect{hOC , xl, yl, x2, y2, diameter,
return (TRUE) ;

diameter) ; I* call GDI *I

I *** ************************ ************ ************************* I
BOOL FAR PASCAL DrawLine(HOC hOC, int xl, int yl , int x2, int y2)

I*

• I

IN : hOC : display context i n which to draw
xl , yl : coor dinates of fi r st endpoint
x2 , y2 coordinates of second endpoint

RET : returns BOOL for consistency w/GDI ' s Rectangle() and Ellipse() .
NarE : Arr ay DrawFig [] conta i ns a point er t o this function.

MoveTo(hDC, xl, yl); /* Mov_eTo{) and LineTo() are GDI calls . *I
LineTo(hDC, x2 , y2);
r eturn {TRUE) ;

I ****** ***************** **** ** **** ** ****** ******* ********* *** * ** * I
BOOL FAR PASCAL About Draw (HWND hDlg, unsigned iMessage , WORD wParam, LONG lParam)

46

Scientific and Technical
Graphics in Windows-

Origin™ • Powerful scientific plotting application.

• Graphic DDE server for displaying large
amount of real time data.

• Graphic DLL to put into your own Windows
application with very little programming.

MicroCal Inc. (413) 586-7720 Fax. (413) 586-0149

CIRCLE NO. 636 ON READER SERVICE CARD

/* Application ' s "About" di alog box function .
* I N: hDlg handle to dial og box

i Message : message t ype
wParam auxiliary message i nfo (act on HDK, IOCANCEL)
l Pararn unused

* RET : Return TRUE if processed appropriat e message, FALSE otherwise .
*I
switch (iMessage)
{ case WM_INITDIALCX; : I* initialize dialog box */

return (TRUE);
case WM_COMMAND : I* received a corrnnand */

/* I OOK if OK box selected ; IOCANCEL if sys tem menu close command *I
if {wParam == I OOK : : wPararn == I OCANCEL)
{ EndDialog (hDlg , TRUE); /* exit dialog box */

return (TRUE); /* did proccess message *I
}
break; I* WM_COMMAND *I

/ * switch (iMessage) *I
return (FALSE) ; /* did no t process message *I

Listing Three
End Listing Two

#*************** DRAW Make file for DRAW .C .***************************
To make program NMAKE DRAW
Linker and Resource Compiler : draw. exe depends on draw. obj draw . def draw . res
Linker opt i ons as fo llows
/A:16 align on paragraphs
ff /CO add symbol information to EXE for CodeView
/ NOD don' t search default l ibs (use only those in link r esponse f ile)

draw .exe : draw .ob j draw .def draw . res
link /A : 16 /CO /NOD draw,, , libw slibcew , draw . def
re draw .res

Microsoft C Compiler : draw .obj contingent on draw.c , draw. h
Compi l er options as follows
- c compile only
-Gs remove s tack probe before function calls
ff -Gw for MS Windows
ff -Od disable code optimization to help with debugging
ff -W3 highest warning l evel (flags ANSI incompatibili t ies)
ff -AS small model
ff -Zp pack structures (required by MS Windows)
fl -Zi add symbol information to OBJ for CodeView
draw. obj : draw. c ·draw .h

cl - c -Gsw -Od -W3 - AS ~Zpi draw. c

Resource Compiler draw . res contingent on draw.re, draw.h
draw. res: draw. r e draw .h

re - r -v draw. re

Listing Four
End Listing Three

; ; **************DRAW . DEF Definition file for DRAW .C**************
NAME DRAW
DESCRIPTION 'MS Windows Draw Program (c) 1990 M. Bertrand & W. Welch '
EXETYPE WINDO\,S
STUB 'WINSTUB . EXE '
CODE MOVEABLE PRELOAD
DATA MOVEABLE PRELOAD SINGLE
HEAPSIZE 1024
STACKSIZE 4096
EXPORTS WndProc

AboutDraw

Listing Five
End Listing Four

/ ************ DRAW . RC resource file for DRAW .C *******************/

i nclude •windows . h g

#include •draw.h "

Drawicon ICON DRAW . ICO

DrawMenu MENU
BEGIN

POPUP "&Tool"
BffiIN

MENUITEM "&Rectangle" ,
MENUITEM "R&ounded rectangl e",
MENUITEM "&Ellipse",
MENU ITEM "&Linen ,
MENUITEM Separator
MENUITEM "&About Draw .

END
END

I DM_RECT, CHECKED
IDM_ROUND_RECT
IDM_ELLIPSE
IDM_LINE

IDM_ABOUT

I* "AboutDraw" dialog box contains 3 types of cont rols
CTEXT to di splay centered text at x -coor dinates 8 , 24 , 40 , 56
I CON t o display DRAW ' s i con a t coor ds r e lative {20 ,20)
DE-FPUSHBU'ITON t o displ ay 32x14 OK push button at coor ds {60, 74)

•!
AboutDraw DIALOG 30, 30, 150, 94
CAPTION • About Draw"
STYLE OS_MODALFRAME : WS_CAPTION WS_ SYSMENU
BEGIN

C'IEXT •Microsoft Windows "
C'IEXT "Draw"
C'I·EXT •copyright (c) 1990 "
C'IEXT "Michael A. Bertrand and William R. Welch "
ICON "Drawicon"

-1 ,
-] ,

- 1,
-] ,
-1,

DEFPUSHBUTTON "&OK " IDOK , 60 , 74, 32, 14,
END

WS_GROUP

0, 8, 152, 8
0 , 24, 152, 8
0 , 40, 152, 8
0, 56, 1 52, 8

20, 20, 19, 26

End Listings

Supplement to Dr. Dobb's Journal, December 1991

