
is-t . '~, f; ~ .

~
~

$1 03
$278
$389
$291
$1 16
$389
S350
S343
$103
S304

S399
$389
S349

S454
$259
$376
$382
S499
$974
$579
S252
$369
$350
$350
S324
S499

$779

S1 09
$1 94
S 83

S 83

S 42
S 51
$174
S 25
S 77
S122

0

T
urbo Pascal is a
supple lan­
guage. Still,
some problems

require an assembly language solution.
These problems fall into two broad cate­
gories: speed (for example, disk I/ O) and
direct access to the system (for example,
get the system time).

Often we want to combine the flexibil­
ity of Turbo Pascal with the power of as­
sembly language, which can be done by
executing short assembly language rou­
tines within a Turbo Pascal program. In­
formation can also be passed between the
Pascal and assembly language programs.

Unlike Microsoft languages, Borland's
Turbo Pascal does not create OBJ files
that can be linked with modules created
by other compilers or assemblers. But
Turbo Pascal does provide other ways to
integrate assembly language code into a
Pascal program. Some of these methods
are discussed in this article.

MSDOS and INTR procedures
Turbo Pascal's MSDOS procedure is
used to execute interrupt 21h, a DOS
call. Interrupt 21h provides a collection
of basic services that can be used to dis­
play characters, read the keyboard, open
disk files, and access the machine in oth­
er ways. Interrupt 21 h is the domain of
assembly language programmers, but
Turbo Pascal 's MSDOS procedure makes
interrupt 21h available to Turbo Pascal
programmers.

In implementing the MSDOS proce­
dure, a Turbo Pascal record type and
variable are used:

type reg = record
ax,bx,cx,dx, bp ,si,di,ds,es, Flags:

By Michael Bertrand

integer;
end;

var registers: reg;

The ax, bx, etc., are record fields of
type integer that are given the same
names as some of the 8088 registers. As­
signments are made to these Turbo Pas­
cal fields, and then MSDOS is executed.
Values returned by the DOS call in reg­
isters are recovered by Turbo Pascal in
variables of the same name:

registers.ax,= $0200;
msdos(registers)

{AH=2, AL=0}
{INT 21 h}

Recall that the 8088's AX register is
16 bits wide-the same as Turbo Pascal
integers. AX can be broken into a high
byte (AH) and a low byte (AL) . Simi­
larly, BX = (BH, BL), CX = (CH,
CL), and DX = (DH, DL). The value

in AH always signifies the DOS service
being called. In Turbo Pascal, a dollar
sign ($) prefix before a numerical con­
stant means the number is in hexadeci-
mal notation (base 16). ,

For example, we obtain the system
time as follows in assembler:

mav ah,2Ch
int 21 h

;get time service
;DOS call

The time is returned in the following
registers:

CH=hour
CL=minute
DH=secand
DL = hundredths/sec

(0-23)
(0-59)
(0-59)
(0-99)

There is no built-in way to obtain the
system time in Turbo Pascal, but we can
get the time by executing the DOS call
in Listing 1.

procedure get time (var hour, minute, se=nd, hundn .. uth: byte J ;
type regs ·= rec'Ord

ax,bx,cx,dx,bp,cii,si,ds,es,flags: integer
end;

var registers .: regs;

lx..,gin
with registers do

begin
ax:= $2C00;
rnsdos(registers);
hour := hi(cx);
minute:= lo(cx);
sec--ond := hi(dx);
hundredth:= lo(dx)

end [with}
end; [procedure}

Listing 1.

[AH= 2Ch; AL= 00h}
[INT 21h}
{CH}
(CL}
[DH)
(DL)

51

The Turbo Pascal INTR procedure is
used to execute any interrupt-MSDOS
is a special case for interrupt 21h. The
REGISTER S record is used with INTR,

just as with MSDOS, except that the in­
terrupt number must be given:

registers.ax : = $0100;
registers.ex : =$0607;
intd$10,registers);

!
AH= 1,AL=O}
CH=6,CL=7}
INT lOh}

Any of the BIOS services can be
called: video services (INT 10h), disk
services (INT 13h), keyboard services
(INT 16h), and so on.

For example, we can print the screen
from within an assembly language pro­
gram by executing an interrupt 5h (this
interrupt is invoked when <SHIFT>
<PrtSc> is pressed at the keyboard):

int 5h ;print the screen

The same thing is done within a Turbo
Pascal program by:

intr($05 ,registers);

In the next example, we invoke one of
the video services at interrupt 10h to

Value assignments for CH and CL

Full

block

cursor:

.Lower two

scan

lines

'
Middle
lour scan

lines

Figure l.

........

.........

········

........

........

........

........

........

..........

........

0
I
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
I
2
3
4
5
6
7

52 COMPUTER LANGUAGE ■ SEPTEMBER 1987

hLscan_line (CH) = 0

lo_scan_..Jfrie (CU = 7

hLscan_line (CH) = 6
IR...scan-line (CU - 7

hi_scan-line (CH) = 2

lo-scarL.line (CU = 5

change the cursor appearance. This is
done in assembler as follows:

mov ah,01 h ;set cursor service
mav ch,hi_scan_line ;scan lines: 0-7

;if color/graphics
mav cl,la_scan_line ;scan lines: 0-12

;if monochrome
int I Oh ;video services

Different shaped cursors result from
assigning different values to CH and CL.
Some possible assignments for the eight
scan lines on a color monitor are shown
in Figure 1.

If we wish to turn the cursor off alto­
gether, we assign a greater value to CH
than to CL:

TURN
CURSOR
OFF:

hi_scan_line (CH) = 5
la_scan_line (CU = 3

With INTR, we can also execute this
video BIOS call in Turbo Pascal, as
shown in Listing 2.

INLINE statement

Turbo Pascal's /NL/NE statement pro­
vides a way to insert machine code di­
rectly into a Turbo Pascal program:

inline($B4/$02/
$CD/$21);

{mov ah,2}
{int 21 h }

$B4/$02 are the two bytes of machine
language representing the 8088 instruc­
tion mov ah,2, and $CD/$21 is the ma­
chine language for int 21 h. The four
bytes are actually inserted into the com­
piled Pascal program at this point. Turbo
Pascal syntax requires that the bytes be
separated by a slash mark (/) and that
the sequence of bytes be parenthesized.

We programmers think in terms of
mov ah,2, but /NL/NE requires us to de­
termine the corresponding machine lan­
guage representation. This can be done
with the simple assembler in DEBUG.
For more complicated assembly language
routines, especially those involving labels,
LST files can be used. These files, gener­
ated by the macro assembler, contain the
assembly language source code side-by­
side with the corresponding machine
language.

I

s

C

C

t

c
t

l
r
G

s
t
e

C

0

t

l

\I

0

f

g
s
l
l

fi
n
a
1
b
l
p
II
C

54

SI
b

e

T
~t
n

)­

H.

5
3

is

t-

me
c­
t-

m­
rbo
:>e
lt

l.

de­
n-
1e

age
els,
1er­
the
(-

A disk file can be read into memory
much more quickly in assembler than
with Turbo Pascal 's READ. Listing 3
shows an example of IN LINE code to
open a disk file, read a specified number
of bytes into a Turbo Pascal array, and
then close the file.

The file is opened with the "open a
file" service at interrupt 21h (AH =
3D). This service requires that the ad­
dress of the file name first be loaded into
the DX register:

lea dx,file_ name

Upon return from interrupt 21 h, the AX
register contains the file handle, a 16-bit
quantity that is identified with this file in
subsequent operations. This handle must
be specified to read or close the file, for
example.

Turbo Pascal global variables are de­
clared to hold the file name, handle, and
other relevant information (BUFFER,
the array into which the file will be read;
FILE--..SIZE; and OK, which tells
whether the file was successfully
opened).

The !NL/NE code finds the Turbo
Pascal variables by direct reference:

$8D/$16/file_ name/ {lea dx,file_name}

An LST file would contain the two-byte
$8D/$16 opposite the lea instruction, to­
gether with a two-byte address. As
shown previously, we simply fill in a
Turbo Pascal global variable name
(fi.le_name) .

In effect, the Pascal program sends in­
formation to the IN LINE routines (file
name, file handle, and buffer address)
and receives information from the IN­
LINE routines (file handle, number of
bytes actually read, and error status).
This two-way transfer of information is
possible because the IN LINE code can
locate the addresses at which Turbo Pas­
cal variables are stored.

To make this transfer work, you need
some knowledge of how Turbo Pascal
stores variables. The name of the file to
be opened is read into the Pascal string

variable fi/e_name with readln. As al­
ready discussed, the IN LINE code finds
the address of this variable with:

$8D/$16/file_name/ {lea dx,file_name}

However, Turbo Pascal uses the first byte
of a string variable to store the number
of characters currently assigned to the
string variable. The string itself-the file
name in this case-is stored starting at
the second byte. This is the reason for
the next instruction:

inc dx

Turbo Pascal takes an entire byte to
store a Boolean variable, with the infor­
mation residing in the least significant
bit: l = TRUE, 0 = FALSE. The disk­
related DOS calls signal an error by set­
ting the carry flag. If we find the carry
flag set in the !NL/NE routine, we put a
0 in Boolean variable OK:

mov ok,O

OK will then register as FALSE when
we return to Turbo Pascal.

Somewhat different methods are need­
ed to find variables other than global
variables. The instructions in the IN­
LINE example depend on the fact that
Turbo Pascal maintains its global varia­
bles in the data segment. Different kinds
of variables are stored differently:

Kind of
variable
Global
Local
Variable parameter

Typed constant

Where
variable
stored
Data segment
Stack segment
Address in
stack segment
Code segment

Turbo Pascal externals
Externals are COM files inserted direct­
ly into a Turbo Pascal program. Param­
eters are passed on the stack. Turbo
Pascal views the COM file as a proce­
dure. The external declaration must be
followed by the name of the COM file,

procedure set cursor (hi scan line, lo,,, scan line: byte);
type regs = record - - - -

ax, bx, cx,dx, bp,di, si, ds, es, flags: intt..'Cjer
end;

var registers: regs;
ch,cl: byte;

begin
with registers do

begin
ax:= $01.00;
ch:= hi scan line;
cl:= l™ scan line;
ex:= 256*ch +-cl;

intr($10,registers)
end · (with}

end; (procedure}

Listing 2.

(AH= 01.h; AL= 00h}

(GI is high byte of ex}
(CL is lo,, byte of ex}
{INr 10h}

53

program read file into buffer;
const r.ax size = 1000;-
var file name:

buffer:
string[50];
arrayll. .,nax_size] of byte;

file size, handle: integer;
ok: - boolean;

-

(*---*)
procedure get name open file;
lx.->gin - - -

clrscr;
write('ENTER PATH AND NAME OF FILE 'ID
readln(file narre);

READ: ');

file name:;; file name+ chr(0); (ASCIIZ form:,t}
ok :;; true; (TRUE = 01h in merrory}

inline
($B0/$00/ (ITDv al,0 ;read only access
$B4/$3D/
$80/$16/file name/
$42/ -
$CD/$21/

$A3/handle/
$73/$05/
$C6/$06/ok/$00)

end; (procedure)

(ITDV
(lea
(inc
(int
(
(ITDV
(jnc
(ITDV

, ah,3Dh
dx,file name
dx -
21h

handle,ax

; open a file service
;DX<-- addr of Turbo var
;go to string data
;OOS call
:NarE: AX<-- handle

instr after next
ok,0 ;ok = FAI..SE(00h)

(*---*)
procedure read file;
o...<>gin -

inline
($8B/$1E/handle/
$B4/$3F/
$8D/$16/buffer/
$8B/$0E/file size/
$CD/$21/ -

$A3/file size/
$B4/$3E;
$CD/$21)

(ITDV bx,handle
(ITDv ah,3Fh
(lea dx,buffer
(ITDv cx,file size
(int 21h -
(
(ITDv file size,ax
(rrov ah,JE
(int 21h

;BX<-- handle
;read a file service
;DX<-- addr of Turbo var
;# bytes to read

' j
)
} ;00S call

;AX= #bytes actually

;close file service
;00S call

read}
}
}
}

end; [procedure}
(*------ ---*)
begin (main}

get name open file; (name in file_name, error status in ok)
if ok then -

begin
file size:= max size;
read-file (NOTE: file size has been adjusted}

end
else

write('ERROR')
end.

Listing 3 .

54 COMPUTER LANGUAGE • SEPTEMBER 1987

I

.... --
-

' -'
L.

between quotes, as it appears in the disk
directory.

Listing 4 is a Turbo Pascal program to
fill the color/graphics screen with a pre­
scribed attribute and character. Both of
these parameters are passed to a COM
external that does the filling (fast).

pop bp
rel 4

The operand of rel will vary depending
on how many bytes are passed on the

program fill screen;
var attr, ch: integer;

stack. Here, two integers, or four bytes,
are passed, hence rel 4.

Procedure FILL(ATTR, CH) has two
parameters in the Pascal program­
ATT R is the first parameter and CH is
the second. The parameters are found in
the COM file relative to the base pointer

FILL.COM must be on the default
drive for program fi!L.screen to compile.
FILL.ASM, the source code for FILL
.COM, is shown in Listing 5. Recall that
FILL.ASM must be assembled with the
macro assembler, linked, and converted
to a COM file with EXE2BIN to pro­
duce FILL.COM.

procedure fill(attr,ch: integer); external 'fill.can';

begin
write('ENTER ATTRIBUTE, 'I'HEN QIARACTER: I);

The first two and last two instructions
of the COM file must be:

push bp

read(attr, ch);
fill(attr, ch)

end.
[NCYI'E: attr is FIRST parameter)
[ch is SECOND pararreter)

mov bp,sp
Listing 4.

;FILL.ASM -- For use as an assembler external with Turbo Pascal.

code

fill

segment
asswne cs:code

pr oc near
push bp
rrov bp,sp

again:

push ds
rrov ax, 08800h

llDV ds,ax
HOV al,[bpJ+4
rrov i:ih, [bp]+6
nov cx,1920
nDV bx,0
l:DV [bx],ax
inc bx
inc bx

loop again
p:Jp ds

pop bp
ret 4

fill endp ·
o:xle enus
end

Listing 5 .

;this must be =nverted to FILL.COM
; TAKES 2 INTffiER PARAMEI'ERS

;these two statements are necessary
;the passed parameters are on the stack
;and BP is used to point to them
;BP, CS, DS, and SS must always be preserved

;old DS must be saved -- it's changed here
;we are going to poke directly into screen RAM
;assumes =lor card -- would be 0B000h on r.ono
;DS <-- 0&300h
; the 2nd parameter is at [BP]+4 (the character)
;the 1st pararneter is at [BP]+6 (the a ttribute)
;nLlfllber of character/attributes to write
;BX will point to screen offset
;loop to fill the top 24 lines

;increment twice because the rrov writes
tvJO bytes

; restore Turbo Pascal's data segment

;t11ese two statements are necessary
;The 4 is required because four bytes were passed on
;t11e stack as parameters. The 'ret' increments
;the stack pointer (SP) by 2, but we need to inc-
; rement SP by another 4 to get ruck to 'l'urbo' s SP.

55

register (BP), which is used to locate in­
formation in ihe stack segment.

BP locates the parameters in the order
opposite to which they were passed. The
second, or last, parameter (CH) is found
at [BP] +4; the first, or next-to-last, pa­
rameter (ATTR) is at [BP] +6.

The last parameter is always at
[BP] + 4, but the location of the next-to­
last parameter depends on the size of the
las t parameter. If the last parameter
were a string/3), which is four bytes
long, for example, then the next-to-last
parameter would be at [BP]+ 8. The sec­
ond-to-last parameter would be at some
sti ll higher address, and so on. The stack
of FILL.COM is shown in Figure 2.

Turbo Pascal allows a program to
know the address of any of its variables.
If VAR_NAME is a Turbo Pascal vari­
able, then OFS(VA R_NAME) is the var­
iable's offset address and SEG
(VAR_NAME) is the variable's segment
address.

These addresses are integers and can
be passed as integer parameters to an ex-

I

STACK in FILL.COM

Low addresses

Turbo's DS: DS

ternal COM file. The COM file then
knows where the Turbo Pascal variable is
and can access it freely. As with IN­
LINE code, information can be sent in
both directions through Turbo Pascal
variables.

DEBUG breakpoints
Interrupt 3 generates a DEBUG break­
point. This means that when a program
running under DEBUG control encoun­
ters an INT 3, the program stops execu­
tion, the 8088 registers and flags are
displayed, and control reverts to the DE­
BUG command line. From here you can
single step through a compiled program
and examine memory, whether Turbo
Pascal variables or stack.

This process is easiest if you first com­
pile the Turbo Pascal program as a
COM file and then execute the COM
file under DEBUG control. To single step
through a breakpoint, reset the instruc­
tion pointer (IP) to the byte after the
INT 3, then resume single stepping (oth­
erwise you never get past the INT 3) .

Turbo's BP: BP - FILL's BP points here

Return address,

2nd parameter:

1st parameter:

High addresses

IP

CH

ATTR

- BP + 2 points here

- BP + 4 points here

- BP + 6 points here

- Turbo's SP points here

Turbo 's BP and the instruc tion poin ter IIP) of the return address ore al ­
ways as shown . Passed parameters are a t higher addresses, with the
last parameter passed listed fi rst , and so on.

Turbo 's doto segment IDS) was saved on the stack only because
FILL .COM al ters it. This va lue is resto red in to DS (pop dsl before return ing
to Turbo .

Figure 2.

56 COMPUTER LANGUAGE • SEPTEMBER 1987

INT 3 is coded as a single byte ($CC) ,
so this !NL/NE statement will generate
a breakpoint in a Turbo Pascal program:

inline($CC)

This technique is invaluable for debug­
ging. For example, in the COM file ex­
ternal, we can insert a breakpoint just
before the call to the external:

read(attr, ch);
inline($ccl;
fill(attr, ch)

If we then run the Turbo Pascal program
as a COM file under DEBUG control,
the Pascal read will function as usual
and wait for our input. But after pressing
Enter, control reverts to DEBUG and we
can then begin single stepping through
the program. After a few instructions in­
serted by the compiler, we come to the
external:

push bp
mov bp,sp
push ds

and so on. The stack can be viewed to re­
solve any question about the location of
parameters. n
References
Bradley, David J. Assembly Language Pro­

gramming /or the IBM Personal Computer.
Prentice-Hall, 1984. [A thorough introduc­
tion to 8088 assembly language. Includes a
number of topics on the IBM PC.]

Lafore, Robert. Assembly Language Primer
for the IBM PC & XT. Plume/ Waite,
1984. [A fi ne book for beginners. Doesn't
assume you already know the subject.]

Norton, Peter. Programmer's Guide to the
IBM PC. Microsoft, 1985. [A good refer­
ence fo r the INT 21h services, the BIOS
services, and other software aspects of the
machine.]

Swan, Tom. Mastering Turbo Pascal. Hay­
den, 1986. [A solid survey of Turbo Pascal,
including its nonstandard elements. Treats
the subject of this article and much more.]

Michael Bertrand teaches mathematics
and programming at Madison Area
Technical College, Madison, Wis.

Artwork, Steve Campbell

