Mathematics Magazine Problem 1456 (October 1994)

Show that the only sequence of numbers $\left(\alpha_{i}\right)$ that satisfies the conditions

$$
\begin{equation*}
\alpha_{i}>0 \text { for all } i \geq 1, \quad \text { and } \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{i-1}=\frac{i \alpha_{i}+1}{\alpha_{i}+i} \quad \text { for all } i>0 \tag{ii}
\end{equation*}
$$

is the sequence $\alpha_{i}=1$ for all i.

Solution. The two conditions imply that $i \geq 0$, while (ii) forces $\alpha_{0}=1$. Solving (ii) for α_{i} leads to

$$
\begin{gather*}
\alpha_{i}\left(\alpha_{i-1}-i\right)=1-i \alpha_{i-1}, \quad \text { and then } \tag{1}\\
\alpha_{i}=\frac{1-i \alpha_{i-1}}{\alpha_{i-1}-i} \quad \text { if } \alpha_{i-1} \neq i \tag{2}
\end{gather*}
$$

If $\alpha_{i-1}=i$, then $1-i \alpha_{i-1}=0$ by (1), so $i^{2}=1$ and $i=1$, showing that (2) holds for all $i>1$.
Consider the family of functions

$$
f_{r}(x)=\frac{1-r x}{x-r} \quad \text { for fixed real } r>0
$$

(2) implies that

$$
\begin{aligned}
& \alpha_{2}=\frac{1-2 \alpha_{1}}{\alpha_{1}-2}=f_{2}\left(\alpha_{1}\right) \\
& \alpha_{3}=\frac{1-3 \alpha_{2}}{\alpha_{2}-3}=f_{3}\left(\alpha_{2}\right)=f_{3}\left(f_{2}\left(\alpha_{1}\right)\right), \\
& \alpha_{4}=\frac{1-4 \alpha_{3}}{\alpha_{3}-4}=f_{4}\left(\alpha_{3}\right)=f_{4}\left(f_{3}\left(f_{2}\left(\alpha_{1}\right)\right)\right)
\end{aligned}
$$

Direct calculation reveals that composing these functions results in a function of the same kind, with

$$
\left(f_{r} \circ f_{s}\right)(x)=f_{q}(x), \quad \text { where } q=\frac{1+r s}{r+s}
$$

Therefore there are constants r_{i} such that

$$
F_{i}(x) \stackrel{\text { def }}{=}\left(f_{i} \circ f_{i-1} \circ \cdots \circ f_{2}\right)(x)=\frac{1-r_{i} x}{x-r_{i}} \text { for } i \geq 2 .
$$

Putting $r=i+1$ and $s=r_{i}$ in the composition formula gives

$$
r_{i+1}=\frac{1+(i+1) r_{i}}{i+1+r_{i}}=\frac{1+r_{i}+i+\left(i r_{i}-i\right)}{1+r_{i}+i}=1+i \cdot \frac{r_{i}-1}{1+r_{i}+i} .
$$

Since $r_{2}=2$, this proves that $r_{i}>1$ for all $i \geq 2$, and therefore that

$$
r_{i+1}-1=\frac{i}{1+r_{i}+i} \cdot\left(r_{i}-1\right)<\frac{i}{i+2} \cdot\left(r_{i}-1\right) .
$$

Unfolding this expression leads to

$$
r_{n+1}-1<\left(r_{2}-1\right) \cdot \prod_{i=2}^{n}\left(\frac{i}{i+2}\right)=\frac{3 \cdot 2}{(n+2) \cdot(n+1)}, \quad \text { for } n \geq 3
$$

the equality due to cancellation of all but two of the numerators and two of the denominators. It follows that $r_{n} \rightarrow 1$ as $n \rightarrow \infty$. The first few values of this sequence are

$$
\left(r_{i}\right)=\left(2, \frac{7}{5}, \frac{11}{9}, \frac{8}{7}, \frac{11}{10}, \frac{29}{27}, \ldots\right), \quad \text { for } i \geq 2
$$

Now fix $x=\alpha_{1}>0$. Then by the original condition (i),

$$
\alpha_{i}=F_{i}(x)=\frac{1-r_{i} x}{x-r_{i}}>0 \quad \text { for } i \geq 2 .
$$

This forces

$$
\frac{1}{r_{i}}<x<r_{i} \quad \text { for } i \geq 2 .
$$

It follows that $x=\alpha_{1}=1$ and also that $\alpha_{i}=F_{i}(1)=1$ for all $i>1$.

