
Journeyman

FastBezier
Curves in

indows
Michael Bertrand

B
ezier curves are widely used
in computer graphics. Post
Script uses these curves as
building blocks, for example;

defining even circles in terms of
Beziers . Many modern PC and Mac il
lustration programs implement Bezier
curves in a direct way, allowing users
to create and interactively edit the
curves to create complex images.

These curves possess several prop
erties that have led to their wide
spread adoption in computer graphics
applications:

• Because they are defined in terms
of a few points, Bezier curves
can be identified with these points
in the graphics database.

• Efficient algorithms generate the
entire curve from the defining
points.

• The defining points intuitively
describe the curve.

Four defining points- A Bezier curve
is defined by four points called con
troll, handlel, handle2, and control2
(abbreviated here as ctrll , hand 1,
hand2, and ctrl2). The curve begins at
ctrll and proceeds toward handl ; at
the other end, we can think of it as
starting from ctrl2 and proceeding to
ward hand2. In each case, the curve
gradually pulls away from the associ
ated handle in its movement toward

Here's how to draw Bezier curves quickly enough to
rubber-band them on-screen.

the other handle/control. The
handles are points of attraction for
the curve; the curve starts from ctrll
toward handl, but gradually pulls to
ward hand2 as the attractive force of
handl diminishes and the attractive
force of hand2 increases. The further
away handl is from ctrll, the longer
the curve will be pulled toward ct rll
before breaking toward hand2.

Bezier curves take several forms, as
shown in the screen shot given in Fig
ure 1. Vectors connecting each con
trol point to its handle are shown as
well as the Bezier curve they define.
This example is about as complex as
four-point Beziers get; more complex
Bezier curves require a series of Beziers
joined together in a continuous path.

de Casteljau Construction-Beziers
must be drawn quickly to be dragged,
or rubber-banded, on the screen ,
since the curves are being drawn and
erased constantly with each mouse
movement. We also need fast Bezier
drawing routines to render a complex
image comprising perhaps hundreds
of individual Beziers in a reasonable
time.

The de Casteljau algorithm is a fast
integer-based method for calculating
points along a Bezier curve, given the

four original defining points. The cal
culated points can then be connected
by line segments to give the impres
sion of a smooth curve. The de
Casteljau algorithm breaks a Bezier
curve into two separate pieces, left
and right, each of which is itself a
Bezier curve.

The key to the efficiency of this al
gorithm is the astounding simplicity
of the math, which involves taking
simple averages to calculate de
Casteljau construction points: First
average the original defining points
(the q's shown below are the aver
ages), then average the averages (r 's),
then take a final average (sO):

ct r ll - pO

qO

hand! - pl rO

q l so
hand2 - p2 r l

q2

c t rl2 - p3

That is: qO = (pO + pl)/2, rO = (qO +
ql)/2, and so on. The actual calcula
tions will be with coordinates, not
points, but it helps to think in terms
of points, keeping in mind that the
"average" of two points is the point
midway between the two. It turns out
that sO is the midpoint of the Bezier

Feb/March 1992 25

C: FAST BEZIER CURVES

.A. FIGURE 1-Sam le Bezier Curves

Bezier
!::!elp

" Left Button down. d1ag, button up for 1st handle.
x Left Button down, dr ag, button up for 2nd handle and Bez.
" Right click to clear window.

/-~
I '\. /
\

\
\ }
\ ,~\\
\(

\ \

~------"--------

.A. FIGURE 2-The de Caster au Construction

p1

rO

pO

curve. What's more, (p0, q0, r0, s0)
are (ctrl, hand, hand, ctr!) for a Bezier
coinciding with the left half of the
original Bezier; and (p3, q2, rl , s0)
are (ctrl, hand, hand, ctrl) for another
Bezier coinciding with the right half
of the original Bezier.

The procedure can be repeated:
the midpoint of the left sub-Bezier is
1/4 of the way along the original
curve; and the midpoint of the right
sub-Bezier is 3/4 of the way along the
original curve. The subdivision pro
cess can be repeated indefinitely to
generate 2, 4, 8, 16, ... 2" sub-Beziers
and 3, 5, 9, 17, .. . 2"+1 points along
the original curve. Like other subdivi
sion processes, the de Casteljau algo-

26 PC TECHNIQUES

p2

q2

p3

rithm lends itself to recursive imple
mentation. Averaging entails dividing
by 2, which can be done quickly as a
shift right operation because we are
dealing with integers.

The de Casteljau construction is il
lustrated in Figure 2, where the p's
are the controls and handles of the
original Bezier curve. q0 is midway
between p0 and pl , r0 is midway be
tween q0 and ql, and so on. Observe
that :

1. s0 is the midpoint of the original
Bezier curve.

2. (p0, q0, r0, s0) are (ctrll , handl,
hand2, ctrl2) of a sub-Bezier coin
ciding with the left half of the

original Bezier curve .
3. (p3, q2, rl, s0) are (ctrll, handl,

hand2, ctrl2) of a sub-Bezier coin
ciding with the right half of the
original Bezier curve.

After the first step illustrated here, we
have 3 points on the curve :

Th e or i gi na l co ntro l poi nt . pO
The mi dpoint of t he or ig inal Bezier cur ve
Th e ori gi nal control po in t , p3

Applying the procedure again to
the left and right sub-Beziers generates
their midpoints, giving five points on
the original Bezier. Subdividing these
four sub-Beziers then gives us nine
points on the original curve, and so
on. Stopping at four subdivision levels
and 17 points produces smooth
curves at VGA resolution. The num
ber of subdivisions, or recursive
depth, is BEZ_DEPTH in the program .
NUM_BEZPTS is the number of
points generated along the Bezier
curve, and is used to allocate an array
to hold the Bezier points. Therefore,
make sure that:

NUM_BEZPTS >- 2m OEPT• + 1

Increasing BEZ_DEPTH results in
more line segments in the Bezier
curve, hence a smoother curve-at
least up to a point. We reach diminish
ing returns in increasing BEZ_DEPTH
too much, since the accumulated er
ror of repeated averaging eventually
throws the calculations off by one or
more pixels. Remember that
BEZ_DEPTH is an exponent, so in
creasing BEZ_DEPTH by 1 doubles
the number of segments.

Since the recursion proceeds to the
maximum depth down the far left
branch, the first curve point actually
generated is the point immediately
following p0 = ctrll along the Bezier.
The remaining points are also gener
ated in order (from p0 = ctrll to p3 =

ctrl2), a nice side effect of the recur
sive implementation. Another point
is collected into an array every time
the recursion reaches its finest subdi
vision level, and the points are in or
der!

Writing tools in Windows-We
want to show off our fast Bezier-draw
ing through an interactive Bezier
Tool. If the curve rubber-bands well
on the screen, then we can claim to
have a good algorithm. Interactive

tools in Windows are constructed
with the concept of "system state. "
The Window procedure passes mouse
messages to BezTool(), which main
tains a key static variable, iState,
which takes four values summarized
in Table 1.

BezTool()'s action depends on
iState, which in turn depends on the
sequence of mouse messages that
have recently streamed into the tool.
Until the first WM_LBUTTONDOWN
message is received, iState remains
NOT_STARTED because nothing has
been done. The first WM_LBUTTON
DOWN triggers a state transition to
DRAG_HANDl. In this state, the tool
responds to WM_MOUSEMOVEs by
rubber-banding the first handle in
XOR mode. WM_LBUTTONUP then
causes a state transition to WAIT_
FOR_CTRL2. Nothing happens until
another WM_LBUTTONDOWN is re
ceived, which changes iState to
DRAG_HAND2; in this state,
WM_MOUSEMOVE messages cause
rubber-banding of both the second
handle and the Bezier curve as a
whole. WM_LBUTTONUP now
causes a final state transition back to
NOT_STARTED. The final handle and
Bezier are frozen, and the tool is
again ready to start another Bezier.

BezTool() calls DrawHandle() and
Draw Bez() to draw the figures (which
in turn call Windows' GDI calls
MoveTo(), LineTo() , and Polyline()) .
Each mouse move causes two calls to
these routines. The first call draws
over the figure exactly where it had
been drawn the first time. Since we
are in XOR drawing mode, drawing
over the original figure erases it. The
second call then draws at the new lo
cation. Static variables must be used if
the user points are to be remembered
for the next pass through the tool so
previous figures can be erased.

Windows and graphics program
ming-Windows is a natural medium
for this kind of programming. Mouse
events are sent to our window proce
dure automatically, enabling us to
build interactive mouse-driven tools.
The GDI system provides line draw
ing, including the R2_NOTXORPEN
ROP code which allows us to draw in
XOR mode.

Windows has a built-in coordinate
system and mapping modes so we
can change our working range of
numbers. The Beziers would not dis-

play nearly as nicely were we restricted
to screen coordinates of about 500x500
pixels. By setting the MM_ISOTROPIC
mapping mode and adjusting the
Window Extent and Viewport Extent
in BezTool(), we can expand the range
to [-1 5,000, +15,000) which minimizes
the negative side effects of calculations
with small integers. •

Editor's note: To rebuild BEZ.EXE, you'll
need severa l fi les in addition to BEZ. C,
including some with no ASCII represen
tation. These fi les are present in a fi le
called BEZ.ZIP, contained within the

COMPUTER

listings archive for this issue, either on a
Disk Subscription disk or from one of the
online services and BBS systems that
cany our listings .

References
Foley, James D., Andries van Dam,
Steven K. Feiner, and John F. Hughes,
Computer Graphics : Principles and
Practice, Addison-Wesley (2nd ed.,
1990), pp 507ff.

Michael Bertrand teaches Mathematics
and programming at Madison Area
Technical College, Madison, WI 53704.

LANGUAGE
l •:CJifJt .._

W#❖J¼iiM•
~
Im• PGnt 5. 0 presents

CBug#651

struct { int a[3], b; } w[] = { { L 2, 3 }, 2 };

~,-w,

Do you see any problems with this declaration? Chances are your compiler
will not report any difficulties and yet, you may be surprised to learn how
many elements are in w[] (hint: it's not 1).
If you need help, give us a call; refer to bug #651 .

PC-lint will catch this and many other
C bugs. Unlike your compi ler, PC-lint
looks across all modules of your appli
cation for bugs and inconsistencies.

New - Optional Strong Type Checking
and variables possibly not initialized.

More than 330 error messages. More
than 105 options for complete cus
tomization. Suppress error messages,
locally or globally, by symbol name, by
message number, by filename, etc.
Check for portability problems. Alter
size of scalars. Adjust format of error
messages. Automatically generate ANSI
prototypes for your K&R functions.

Attn: Power users with huge programs.

PC-lint 386 uses DOS Extender
Technology to access the full storage
and flat model speed of your 386. Now
full y compatible with Windows 3.0
and DOS 5.0

PC-lint 386 -$239
PC-lint DOS - OS/2 - $139

Mainframe & Mini Programmers

FlexeLint in obfuscated source
form, is available for Unix, OS-9,
VAX/VMS, QNX, IBM VMIMVS,
etc. Requires only K&R C to com
pile but supports ANSI. Call for
pricing.

G~m~®~ ~@1lir\\W~tr®
3207 Hogarth Lane, Collegeville, PA 19426

CALL TODAY (215) 584-4261 Or FAX (215) 584-4266
30 Day Money-back Guarantee.

PA add 6% sales tax. PC-lint and FlcxeLint are trademark~ of G impel Software

Feb/March 1992 27

C: FAST BEZIER CURVES

A TABLE 1-IState's Four Possible Values

NOT _STARTED

DRAG_HANOl

: tool has not been started

: dragging handlel

WA I T_ FOR_CTRL2

DRAG_HAND2

: waiting for control 2 to be entered

: dragging handl e2 and Bezi er

A LISTING 1-BEZ.C
/* BEZ . C : Program to draw Bezi er curves and their handles

interactively. User draws first handl e by draggi ng, then second

hand l e ; the Bezier curve rubber-bands together with the second

hand l e . Demonstrates the de Caste l jau algorithm for fast

calculat i on of Bezier points.

Copyright (c) 1991, Michael A. Bertrand. *I

/Ii nc l ude <windows. h>

Iii ncl ude " bez. h"

HPEN hRedPen : /* red pen for handles. */

int LogPerDevi ce; /* //logical units per device unit

(both axes). */
WORD cxClient; /* size of client area (x). */

/* size of client area (y). */ WORD cyCl i ent:

HANDLE hinst; /* cu rrent instance */

POINT BezPts[NUM_B EZPTSJ; /* array of pts along Bezier curve */

PO INT *Pt rBezPts; /* pointer into BezPts [J array * /

char Instr![] -

" * Lef t Button down. dr ag, button up f or 1st hand l e . ";

char Instr2[] -

"* Left Button down. drag. button up for 2nd handle and Bez . ":

char Inst r3[J - "* Right click to clear window. ":

int PASCAL Wi nMa in(HANDLE hl nstance. HANDLE hPrev Instance.

LPSTR 1 ps zCmdL i ne. int nCmdShow)

I*

*I

USE: Register window and set di spa ch message loop.

IN: hinstance,hPrevinstance, lpszCmdLine , nCmdShow : standard

WinMain parms

stat i c ch ar szAppNa me [J - "Bezier";

static char sziconName[J - "Bez Icon";

static char szMenuName[J - "BezMenu " ;

HWND

MSG

hWnd ;

msg;

WNDCLASS we;

/* handle to WinMain's window*/

/* message di spached to window * /

/* for registering window */

/* Save instance handle in global var

so can use f or " About" dia l og box . */

hlnst - hlnstance;

/* Register application window class . */

if (! hPrevlnstance)

{

we . sty l e - CS_HREDRAW I CS_VREDRAW;

wc. lpfnWndProc - WndProc; /* fn to get window ' s messages * /

wc . cbClsExtra - O;

wc.cbWndExtra

wc.hlnstance
- O:
- hinstance:

wc.hlcon - Loadl con(h lnstance . sz l conNamel;

wc.hCursor - LoadCu r sor(N ULL , IDC_ARROW);

we. hb rBac kg round - GetStockObj ect (W H ITE_BRUSH);

wc. l pszMenuName - szMenuName;

we. l pszCl ass Name - szAppName;

if (!RegisterClass(&wc))

return(FALSE);

/* menu resource in RC file * /

/* name used in ca 11 to

CreateWindow() */

/* Initialize specific instance. */

hWnd - CreateWi ndow(szAppName. szAppName. WS_OV ERLAPPEOW I NDOW .

CW_USEOEFAUL T. CW_USEDEFAULT. CW_USEDEFAU LT,

28 PC TECHNIQUES

CW_USEDEFAULT. NULL, NULL, hinst ance, NULL):

ShowWindow(hWnd, nCmdShow); /* display the window*/

UpdateWindow(hWnd); /* update client area ; send WM_PA INT */

/* Read msgs from app que and dispatch them to appropriate win

function . Continues unt i 1 GetMessage() returns NULL when it

receives WM_QU IT. * /

while (GetMessage(&msg, NULL, NULL, NULL))

[

Transl ateMessage (&msg) : /* process char input from keyboard */

/* pass message to window function */ Di spa tchMessage (&msg) ;
)

return(msg .wParam) ;

1 ong FAR PASCAL WndProc(HWND hWnd , unsigned i Message.

WORD wPa ram, LONG 1 Par am)

I*
USE: App l ication ' s window procedure : all app's messages come

here.

IN: hWnd, iMessage,wParam, l Param : standard Windows proc parameters

*I

HOC hDC; /* must generate our own handle t o DC to draw */

PAINTSTRUCT ps; /* needed when receive WM_PAINT message */

FARPROC l pProcAbout; / * pointer to " AboutBez " function * /

switch(i Message)

case WM_CREATE:

/* Create hRedPen once and store as gl obal. */

hRedPen - CreatePen(PS_SOL!D, 1. RGB(255. 0, O));

break; /* WM_CREATE */

case WM_S!ZE:

/* Get c l ien t area size into globals when wi ndow resized. */

cxCl i ent - LOWORD(l Param) ;

cyClient - HIWORD(lParam);

break; /* WM_S IZE */

case WM_COMMAND:

if (wPa ram - IDM_ABOUT)

{

I * "About " menu i tern chosen by user :

call " AboutBez" function. */

l pProcAbout - MakeProc Ins ta nee(AboutBez. h Inst);

Di al og Bo x (hinst. " AboutBez " . hWnd , 1 pProcAbout);

FreeProc Instance(1 pProcAbout);

)

break: /* WM_COMMAND */

case WM_PA!NT:

/* Repaint instructions at upper left of window. */

hDC - BeginPaint(hWnd. &ps);

Se l ectObj ect (hDC , GetStockObject (ANSI _VAR_FONT l);

TextOut(hDC, 0 , 0, Instrl, lstrlen(Instrl)) ;

TextOut(hDC, 0, 15, lnstr2. lstrlen(Instr2)):

TextOut(hDC, 0, 30, l ns t r3, l strlen(Instr3));

EndPaint(hWnd, &ps);

break; I* WM_PAINT */

case WM_LBUTTONDOW N:

case WM_RBUTTONDOWN:

case WM_MOUS EMOVE :

case WM_LB UTTON UP :

/* Mouse events passed on to BezTool () for process ing . */

BezTool(hWnd, iMessage, lParam);

break: /* WM_LBUTTONDOWN. . . * /

case WM_DESTROY:

/* Destroy window & delete pen when appl i cat ion terminated. */

De 1 et eObject (hRedPen) ;

PostQuitNessage(O):

break: /* WM_DESTROY */

default:

return(OefWi ndowProc(hWnd, iMess age, wPa ram . 1Pa ram)) ;

/* switch(iMessage) */

return(OL):

void NEAR PASCAL BezTool (HWND hWnd. unsigned iMessage, LONG lParam)

I*
USE : Process mouse event to draw handles and Bezier curve .

IN : hWnd hand l e to wi ndow

iMessage: mouse event (WM_L BUTTONDOWN, etc.)

l Pa ra m mouse coords (x -- loword . y -- hiwordl

NOTE : This is the interactive Bezier drawi ng tool which processes

WM_ RBUTTONDOWN . WM_LBUTTONDOWN. WM_MOUSEMOVE. and WM_LBUTTON UP

messages. BezTool() is called repeatedly as the user draws . The

cur r ent state of the tool is mainta ined i n the key static variab l e

iState. iState ' s value, as set last t i me thru the tool. determines

the tool ' s action this time thru. Bezier control and handle points,

as input by t he user, are al so maintained as statics so BezTool()

remembers them the next time th ru.

*/

HOC

WORD

hDC; I*
maxClient; /*

must generate our own ha nd le to DC to dra w */

larger of (cxClien t. cyClient) */

POINT inPt; I* i ncoming point * /
POINT pts[2l: /* to get LogPerDevice, //logical units/dev. unit */

/* user-entered Bez contro l & handle (1st): */

static POINT ct r ll, handl ;

/* user-entered Bez control & handle (2nd) : */

static POINT ctr12. hand2 ;

static int iState; /* BezTool() 's sta t e : DRAG_HANDl. etc . *I

hDC - GetDC(hWnd) ;

/* Set extents and origin so wil 1 be working

in range [-15000. +15000]. */

SetMapMode(hOC, MM_ I SOTROPIC) ;

SetWi ndowExt(hOC. 30000, 30000);

maxClient - (cxCli en t > cyClient) ? cxClient : cyCl i ent;

SetViewportExt(hDC. maxClient. -maxClient);

Set ViewportOrg(hOC, cxClient » 1 , cyClient » 1) ;

/* Calculate //logical un i ts per device un i t

will need later when draw little 3x3 boxes i n DrawHandle() . */

pts[O].x - pts[OJ.y - O;

pts[l].x - pts[l) . y - l;

DPtoLP (hDC. pts. 2);

LogPerDev i ce - (pts[l].x > pts[O].x) (pts[l]. x - pts[O].xl :

(pts[O] . x pts[l) . x);

/* Incoming point in device coordinates. */
inPt . x - LOWORD(]Param) ;

inPt.y - HIWORD(lParam);

/* Convert to l ogical coordinates. */

DPtoLP(hDC, &inrt, 1) :

switch (i Message)

case WM_RBUTTONDOWN:

/* Erase client area if not in mi ddle of Bez. */

if (i State - NOT_STARTED)

InvalidateRect(hWnd, NULL, TRUE);

break; /* WM_RBUTTONDOWN * /

case WM_ LBUTTONOOWN:

switch(i State)

(

case NOT_STARTED:

i State - DRAG_HANDl;

handl . x - ctrll.x - inPt.x ;

handl . y - ctrll . y - inPt.y;

break ; /* NOT_STARTED */

case WAIT_FOR_CTRL2 :

i State - DRAG_HAND2;

hand2.x - ctrl2.x - i nPt.x;

hand2.y - ctr12 .y - inPt .y;

/* starting drag */

/* store user point

in statics */

/* starting drag*/

/* store user point

in statics*/

I I

SetROP2(hDC, R2_NOTXORPEN); /* draw in XOR*/

DrawBez(hDC, ctrl l, handl , hand2. ctr 12);

break; /* NOT_STARTED */

/* switch(iState) */

break; /* WM_ LBUTTONDOWN */

case WM_MOUSEMOVE:

switch(i State)

case ORAG_HANDl:

SetRDP2(hDC . R2_NOTXORPEN); /* draw in XOR*/

IJrawHandle(hDC, ctrll, handll; /* erase ol d */

ha ndl.x - inPt. x ; /* get new handle*/

handl.y - inPt.y:

DrawHandle(hDC, ctr 11, handl); /* draw new */

break; /* DRAG_HANDl */

case DRAG_HAND2 :

SetROP2(hDC, R2_NOTX ORPEN); /* draw in XO R */

DrawHandle(hOC, ctr 12, hand2); /* erase old*/

DrawBez(hDC. ctrll , hand!. ha nd2, ctr12);

hand2.x - inPt. x;

hand2 . y - inPt.y;

/* get new handle * /

DrawHandle(hDC. ctr l 2 , hand 2); / * draw new*/

DrawBez(hDC, ctrll, hand!, hand2, ctr12);

break; /* DRAG_HANDl * /

/* switch(iState) */

break ; /* WM_MO USEMOVE */

case WM_LBUTTONUP :

switch(iState)

case DRAG_HANDl :

i State - WAIT_FOR_CTRL2 ;

SetROP2(hDC , R2_COPYPEN) ; /* COPY pen for final handle*/

OrawHandle(hDC. ctrll. handl); /* draw in COPY mode * I
break; /* DRAG_HANDl */

case ORAG_HAN02:

iState - NOT_STARTEO;

SetRDP2(hDC, R2_COPYPEN) ; /* COPY pen for final handle*/

DrawHandle(hDC, ctr12 , hand2); /* draw i n COPY mode * /

DrawBez(hOC, ctrll, handl, hand2. ctr l 2);

break ; /* DRAG_HAND2 */

/* switch(i State) */

break; /* WM_ LBUTTONUP */

/* switch(iMessage) */

ReleaseDC(hWnd, hDCl;

BOOL FAR PASCAL AboutBez(HWN D hDlg. unsigned i Message,

WORD wParam. LONG l Pa ram)

I*
USE,

I N:

App l i cation ' s "About" dialog box funct i on .

hDl g handl e to dialog box

iMessage message type

wParam auxiliary message info (act on !DOK, IDCANCEL)

l Param unused

RET : Return TRUE if pro cessed appropr i ate message , FALSE otherwise .

NOTE: Closes " About " box only when user clicks OK button

or system close. */

switch (iMessage)

case WM_ INITDIALOG : /* initialize dialog box*/
r etu r n (TRUE);

case WM_COMMAND: /* received a command * /

/* !DOK if OK box selected; IDCANCEL if system menu close command */

if (wParam -- IDOK 11 wParam - IDCANCEL)

{

EndDia l og(hDlg, TRUE); /* exit dialog box*/

return(TRUE) ; /* did proccess message*/
}

break ; /* WM_COMMAND */

/* switch (iMessageJ */

return (FALSE); / * did not process message*/

Feb/ March 1992 29

C: FAST BEZIER CURVES

void NEAR PASCAL DrawBez(HDC hDC , POINT ctrll, POINT hand!,

POINT hand2, POINT ctrl2)

I*
USE: Draw Bezier curve given control and handle points.

IN: ctrll,handl,hand2,ctrl2 : control and handle points for Bezier
NO TE : Set up, then call SubDiv ideBez(), the recursive de Casteljau

routine, genera te points alon g the Bez. Windows' Polyl i ne() displays

the Bez as a polygon. BEZ_ DEPTH - recursive depth of de Caste l j au.

Initial POINT ctrll loaded here, then recursive routine calculates

and loads the remaining 2'BEZ_ DEPTH - (NUM_BEZPTS · 1) de Casteljau
pts. * I
(

PtrBezPts - BezPts;

*PtrBezPts++ - ctrl 1 ;
/* init ptr to start of array */

/* first control point specia l case */
/* ca l c pts */

SubDi vi deBez(ctrll , ha nd!, hand2, ctrl 2 , BEZ_ DEPTH);

Polyline(hDC, Bezpts, NUM_B EZPTS); /* call Windows to draw*/

void NEAR PASCAL SubDivideBez(POINT pO, POI NT pl,

POINT p2, POINT p3, int dept h)

I*
USE: Calculate de Castel j au construction points and break Bez

in two .

IN: p0,pl,p2,p3 : control/hand l e/handle/control for Bez to
subdivide depth : current recursive depth of algorithm.

NOTE : Calculates t he de Castel j au construct ion points so the
Bezier can be subdivided into 2 parts (l eft, then right) by

recursive calls to this routine. Recursio n is broken off whe n

depth, decremented once f or each recursion level, becomes 0.

Th is is the finest level of subdivision; the right-most point on
the small subdivided Bezier i s a l so a point on the original

Bez ier, so we load it into global array BezPts[] (thru PtrBezPts
which points into the array) . */

Announcing version 2:

Victor Image Processing L ibrary
Use Victor to develop powerful image applications

Work with images of any size -- use
conventional, expanded, and
extended memory
Now your applications can support 8-bic color
and gray scale images of any size because
Victor gives you complete contro l over con
ventional, expanded, and extended memory.
Display on Super VGA
Display images on EGNVGA and super VGA up
to 1024 x 768 256 colors.
Load & save PCX/TI FF/GIF/BIN
Handle images from any source, or create
translation programs between the popular.file
formats.
Gray scale and color images
Powerful image processing for all images ··
your software can have features like: zoom,
resize, brighten, contrast, sharpen, outline,
linearize, matrix conv, colorize, & more.
ScanJet and LaserJet support
You can offer device control for gray scale
scanning .. AND print halftones at any size.

Victor supports Microsoft C, QuickC, and
TurboC, includes demonstration and proto
typing software, and full documentation . .
Source code available.

Victor Library version 2, $195
Call (314) 962-7833 to order VISNMC/COD

Image-based applications can
be developed in MSC, QuickC,
and Turbo C environments.

Give your applications support
for scanner and laser printer.

Catenary Systems 470 Belleview St Louis MO 63119 (314) 962-7833

Circle 76 on reader service card

30 PC TECHN IQUES

/* de Casteljau construction points: */
POINT qO, ql. q2, rO, rl. sO;

/* depth -- O means we are at the f i nest subdivision level:

grab point into global array and return , breaking off recursion.

*I
if (!depth)

[

*PtrBezPts++ - p3;

return:

/* Calculate de Casteljau construction points as averages of
previ ous poin ts (ie. , midway points); note shift right is
fast div i sion by 2. */

I* q's are midway between 4 incoming control and handle points.
qO.x - (pO .x + pl.x) » 1; qO.y - (pO.y + pl.y) » 1;
ql.x - (pl.x + p2.x) » l; ql.y - (pl.y + p2.y) » 1;

q2.x - (p2.x + p3.x) » 1; q2.y - (p2 . y + p3.y) » l;

/* r ' s a re midway between 3 q's. * I
rO . x - (qO.x + ql.x) » 1; rO.y - (qO .y + ql.y) » 1 ;
rl . x - (ql.x + q2. x) » 1; rl.y - (ql.y + q2.y) » l;

*/

/* so is midway between 2 r's and is in middle of original Bez. */
sO .x - (rO.x + rl.x) » I; sO .y - (rO.y + r l.y) » l;

/* Decrement depth ; subdivide incoming Bez into 2 parts :
l eft, then r i ght . */

SubDiv i deBez(pO, qO , rO , sO, --depth);

SubDivideBez(sO, rl, q2. p3 , depth);

void NEAR PASCAL DrawHandle(HDC hDC, POINT p, POINT q)

I*

*I

USE: Draws handl e on screen f rom p to q with hRedPen.

IN: hDC : handl e to display context

p,q : handle start and end points

NOTE: Don't CreatePen or delete ·· these are done globally once
only.

Handles are drawn wit h little 3x3 pixel boxes at each end.

Each pixel is LogPerOevice logical units; logical units must be

used for the boxes since we are in MM_ISOTROPIC mapping mode.

HPEN origPen; /* DC's orinal pen * /
int xLeft ; /* l eft coord of little
int xR i ght; /* right coord of little
int y; /* y coord of little box

/* Save original pen, select red pen. */
origPen - Se lectObject(hDC . hRedPen);

/* Draw handle. */

box at end
box */

*I

MoveTo(hDC. p.x, p.y); LineTo(hDC, q. x, q.y):

of handle */

/* Set left and right coords around q.x (3 pixels) . Remember

Windows lines do not dr aw la st pixel. */
xLeft - q.x · LogPerDevice;
xRi ght - q . x + (LogPe rDevi ce « 1);

/* I nit y coord 1 pixel below q.y. */

y - q.y LogPerDevice :

/* Draw l ittle box : 3x3 pixel s. * I
MoveTo(hDC, xLeft, Y) ; LineTo(hDC,
MoveTo(hOC. xLeft, y); LineTo(hDC,
Move To(hDC . xleft, y); Li neTo(hDC ,

/* Re -select orig ina l pen. */

SelectObject(hDC, origPen);

xRi ght.
xRi ght,

xRi ght,

y); y +.. LogPerDevi ce;
y); y +- LogPerDevi ce;
y); y +- LogPerDevi ce;

