
The CORDIC Method for Faster sin
and cos Calculations

Michael Bertrand

CORDIC stands for Coordinate Rotation Digital Com
puter, an early device implementing fast integer sine and
cosine calculations (Voider, 1959). Whenever trigonometry
functions must be evaluated repeatedly, as in computer
graphics, integer methods, such as CORDIC, should be con
sidered. While integer methods are less accurate than the C
Library functions sin and cos, the improved speed makes the
tradeoff quite acceptable in some applications.

CORDIC Units
The key to the CORDIC method is the representation of

both angles and trigonometric ratios as integers. In this im
plementation a 16-bit unsigned integer represents the angles
around the circle as shown in Table 1.

With CORDIC angle units, or CAUs, the circle divides into
64K parts instead of 360 parts using degrees. Each degree
measures about 182 CAU.

Sine and cosine values are represented as signed integers,
with an implicit denominator of 16384 (CordicBase in the ac
companying program). Calculated sines and cosines lie in the
range -16384 to + 16384, corresponding to a trigonometric
ratio between -1 and + 1. Table 2 contains sample correspon
dents in this fixed point scheme.

Suppose your application receives a value of 100 and must

multiply it by sin(54°) to produce the nearest integer (a
realistic example from computer graphics where input and out-

put are pixel locations). The standard approach, using the C
Standard Library sin call, amounts to:

100 x sin(54°) = 100 x 0.8090 = 80.90 -> 81

Both the floating-point multiplication and the sin are ex
pensive.

The CORDIC version of this calculation substitutes a fast
sin and long integer multiplication (where 54° = 9830 CAU
and sin(9830 CAU) = 13255 CORDIC fixed-point units):

100 x sin(9830) = (100 x 13255 + 8192) / 16384 =
81.40 -> 81

The 8192 is added for integer rounding (8192/16384
0.5). The division by 16384 is done with an inexpensive right
shift. CORDIC's speed is due to the fast sine calculation and
the complete avoidance of floating-point calculations.

CORDIC Special Angles
The CORDIC algorithm depends on representing a given

angle by a set of special angles, {arctan(2-i)} = {arctan{l),
arctan(l/2), arctan(l/4), ... } :

arctan(1)

arctan (1/2)
45.00° = 8192 CAU

26.57° = 4836 CAU

Mike teaches Mathematics and programming at Madison Area Technical College, Madison, WI 53704.

The C Users Journal - November 1992 Page 57

The CORDIC Method for Faster sin and cos Calculations

arctan(1/4)
arctan(1/8)
arctan(l/16)

14.04° 2555 CAU
7.13° 1297 CAU
3.58° 651 CAU

Using these special angles, 54° is represented to a finer and
finer precision as follows:

54° 45.00
54° 45.00 + 26.57
54° 45 .00 + 26.57 - 14.04

45.00
71.57
57.53

Table 1 16-bit unsigned integers representing the angles
around the circle

degrees CORDIC angle units (CAU)

0 0

45 8192

90 16384
180 32768

270 49152

"Without a doubt, OPUS Make
is the hottest make utility

on the market"
Tom Swan, PCWorld

For professional programmers,
OPUS Make is the superior choice
in a make uti I ity. It is the fastest most
full-featured make utility there is.
Features include:

• DOS version uses only 3K memory!
• Multiple directory support.
• Supports: Polytron PVCS™

Burton Systems TLIB™
Microsoft LIBTM
SLR Systems OPTLIBTM

• Generates automatic response files of
unlimited length for LINK and LIB.

• OPUS MKMF included: An automatic de
pendency generator that fully under
stands C preprocessor directives.

Both DOS and OS/2 executables
for only: $129 MC, Visa, coo, or

PO. 60 day MBG!

Call 1-800-248-OPUS
International: 415-664-7901

1032 Irving Street, Suite 439, San Francisco, CA 94122
Trademar1<s owned by !heir respective companies

❖ Request 159 on Reader Service Card ❖
Page 58

Michael Bertrand

54° 45.00 + 26.57 14.04 7.13 50.40
54° 45.00 + 26.57 14.04 7.13 + 3.58 53.98

This approximation has a physical interpretation. Think in
terms of a vector 16384 units long and emanating from the

origin in a standard x-y coordinate system. Starting at 0° along
the positive x axis, the vector rotates through each of the spe
cial angles one step at a time. Rotation at each step may be
clockwise or counter-clockwise, whichever is needed to bring
the vector closer to 54°. The special angles represent rotations
by smaller and smaller amounts, with positive signifying

Table 2 Sample correspondents in a fixed-point scheme
where calculated sines and cosines lie in the range -16384
to + 16384, corresponding to a trigonometric ratio between
-1 and +7

decimal CORDIC fixed point units

-0.8 -13107

-0.5 -8192

0.0 0
0.25 +4096

+0.5 +8192

Listing 1 C0RDIC.C

/* CORDIC.C : Demonstrates the integer-based CORDIC
system for calculating sines and cosines. The
vertices of a regular hexagon are calculated using
CORDIC trig and the hexagon itself is rotated.

*
*
*

*
Make in Borland C++'s internal environment.
(c) 1991 Michael Bertrand.

*/

#include <stdio.h>
#include <math.h>
#include <conio . h>
#include <graphics.h>

typedef struct
{

int x;
int y;
POINT;

/* printf */
/* sqrt, atan */
/* getch */
/* BGI */

typedef unsigned int WORD;

void CalcHexPtsCORDIC(POINT center, POINT vertex);
void DrawHexagon(POINT center, POINT vertex);
void DrawCross(POINT pt, int colr);
void SinCosSetup(void);
void SinCos(WORD theta, int *sin, int *cos);

#define ESC OxlB

/* Quadrants for angles.*/
#define QUADl 1
#define QUAD2 2
#define QUAD3 3
#define QUAD4 4

The C Users Journal - November 1992

Michael Bertrand The CORDIC Method for Faster sin and cos Calculations

counter-clockwise rotation and negative signifying clockwise
rotation.

Expansion Factor

Starting at 0° along the positive x axis, +45.00° is a
counter-clockwise rotation into the middle of the first quad
rant. The next step again rotates counter-clockwise by another
26.57°, but this results in 71.57°, which overshoots the mark.
The third rotation is therefore clockwise, signified by the

minus 14.04°, bringing the result back to 57.53°. This continues
as many times as there are bits in 16384--14 times.

A problem arises with pl, which is further from the origin
than p was at each step, so the vector does not simply rotate
around a circle of radius 16384, but also expands. The expan
sion can be exactly measured by applying the Pythagorean
theorem to the right triangle containing p and pl:

p12

The x and y coordinates of the rotating vector are the
cosine and sine of the vector's angle at each step, assuming
that the vector's length, 16384, doesn't
change during rotation. As the vector's

angle approaches 54° more closely, its x
and y coordinates provide better ap-

proximations of cos(54°) and sin(54°).

CORDIC Equations
Figure 1 illustrates the geometry of a

counter-clockwise rotation at the i th

step. Rotate vector p through an angle of
arctan(2-i) to new vector pl such that
the indicated angle at p is a right angle.
The task is to express the new (cosine,
sine) approximations (xl, yl) in terms of
the old ones (x, y). The two shaded tri
angles are similar because they are right
triangles with acute angles that are equal.
In the right triangle connecting p and pl
to the origin, the two legs R* and R are in
the proportion 1 : 2i by the definition of
arctan(2-i)) :

ri = tan(arctan(2-i)) = (R*}/R

R and R* are the hypotenuses of the
two similar triangles, so these triangles
are in the proportion 1 : z•i_ This implies
that the shorter horizontal leg of the
small triangle is y/(2i) and the longer,
vertical leg is x/(2\ leading to the
counter-clockwise equations:

ccw rotation xl
yl

X - y/(2i)
Y + x/(2;)

Rotating pl clockwise leads to the
clockwise equations, identical except for
a sign reversal:

cw rotation xl
yl

X + y/(2i)
Y - x/(2;)

These are fast operations involving in
teger addition, subtraction and shifting.

Order now by calling our toll free
number or mail the coupon to:

Mix Software
1132 Commerce Drive
Richardson, TX 75081

1-800-333-0330
60 Day Money Back Guarantee
Not Copy Protected • No Royalties

For technical support, please call:
1·214-783-6001

FAX: 1·214-783-1404

R2 + (R/2;)2 = R2 + R2/ 22;

R2 * (1+1/22;)

= R2 * (li + 1) / 22i

Now you can develop sophisticated
scientific and engineering applications
using your favorite C or C++ compiler.
With a broad range of mathematical
functions, the C/Math Toolchest' " gives
C as much number crunching power as
FORTRAN. More than 135 functions
provide support for:

Probability and Statistics:
including uniform, normal, binomial,
Poisson, and hypergeometric
distributions, and least-squares
regression.

Complex Arithmetic and Linear Algebra:
including a comprehensive set of
vector and matrix operations, and
solutions to simultaneous linear
equations.

E .

•

Turn your CIC++
compiler into a
powerful scientific
programming tool ...

Numerical Analysis
and Digital Signal Processing:

including integration, differentiation,
interpolation, root finding , convolu
tion, FFTs, power spectrum analysis,
and filter design.

To graphically view the results
of your number crunching, we've also
included GRAFIX'", a graphical data
analysis program. The GRAFIX'"
program makes it easy to ed~. plot,
interpolate, or perform regression
analysis of your data.

You may also purchase the C source
code for the library and GRAFIX'"
program. The C/Math Library Source
works with any ANSI standard C or C++
compiler. The C/Math GRAFIX Source
works with the C and C++ compilers
from Mix®, Borland0

\ and Microsoft®.
Prebuilt libraries for the DOS versions
of these compilers are included with
the C/Math Toolchest.

Now Only $29.95!
Includes 430 page manual

1 Order Coupon cl
Name _________ _
Street _________ _
City __________ _

State ____ Zip _____ _
Telephone ________ _

O Send me free brochures for all Mix products
Paying Sy: o Money Order O Check

0 Visa O MC :::l AmX J Disc
Card# _________ _
Exp. Date ________ _
Disk Size ::i 5 11,· :J 3 '/. '
a_!!.- Prodlltl

C/M.!L-Toclthesl. 52995
_CIMalh l ,bral'fSou:i;e $1 0.00
_ CIMamGRAFXSource $10.DO

AddSlll pp i1111
(S5USA.S10Canada. S20Fore1on)

TexasRes1dentsAdd8.25% SalesTax .. .

cotalAmount ot Your Order I - - :_J

CJMa1h Toolches1 and GRAFIX are uaoemarks o! Mix Soltware. Inc. Mi,. Borland. and Microson are trademarks of th e respec1ive compaflies.

• Request 120 on Reader Service Card•

The C Users Journal - November 1992 Page 59

The CORDIC Method for Faster sin and cos Calculations

or:

Pl R * ✓ 22i 1
+ 22i

The first rotation (45°) expands the vector by a factor of ./2
= 1.414; the second rotation (26.57°) expands it further by a

factor of /f = 1.118; the third rotation (14.04°) expands by

~ = 1.031, and so on. Each of the 14 rotations entails such

an expansion, although the later ones are negligible.
The net effect is an expansion by a factor of 1.414 x 1.118 x

1.031 x ... = 1.646760. The original vector will expand to
1.646760 x 16384 = 26981 in the course of rotating. To offset
this expansion, the original vector is contracted before starting
the process to bring its final length, after the rotation/ expan
sions, back to 16384. Instead of initializing the vector to 16384,
it is initialized to xlnit = 16384 /1.646760 = 9949, which ex
pands to 16384 after 14 steps. At the last step the vector's x
~nd y coordinates will be the cosine and sine in CORDIC

fixed-point units (based on 16384).

Implementation Notes
The central routine is SinCos (See Listing 1), which calcu

lates the sine and cosine of an incoming angle. Both incoming

ADD MULTITASKING POWER
TO c++ CLASSES!

smx++ is a C++ class library built upon an
enhanced (v3.0) smx base. It is designed to
present a simple, yet powerful, API to the
C++ programmer. smx calls are also directly
accessible, if needed. Hence, C++ and C
application code can coexist. Features:

0 16 classes O BC++ & MC++ compatible
0 fully dynamic O process class
0 software i/o bus (SIOBus) for device drivers

Call or fax for free demo

9 MICRO DIGITAL 1-800-366-2491
6402 Tulagi St., Cypress, CA 90630

VOICE 714-373-6862 FAX 714-891-2363

❖ Request 202 on Reader Service Card ❖
Page 60

Michael Bertrand

/* NBITS is number of bits for CORDIC units. */
#define NBITS 14

/* NUM PTS is number of vertices in polygon.*/
#define NUM PTS 6

int ArcTan[NBITS];
int xinit;

/* angles for rotation*/
/* initial x projection*/
/* base for CORDIC units*/
/* CordicBase / 2 */

WORD CordicBase;
WORD HalfBase;
WORD Quad2Boundary; /* 2 * CordicBase */
WORD Quad3Boundary;
POINT HexPts[NUM_PTS+l];

/* 3 * CordicBase */
/* calculated poly points*/

void main(void)
{

int driver;
int mode;
WORD theta;
int sine;
int cosine;
POINT center;
PO INT vertex;
POINT vertex!;
POINT del;
int radius;

driver= VGA;
mode = VGAHI;

/* for initgraph() */
/* for initgraph() */
/* CORDIC angle*/
/* sine of CORDIC angle*/
/* cosine of CORDIC angle*/
/* center of hexagon*/
/* hexagon's original base vertex*/
/* hexagon's changing base vertex*/
/* vertex - center (radial spoke) */
/* radius of circumscribing circle*/

/* for initgraph() */
/* mode Oxl2 : 640x480 16 color*/

if (registerbgidriver(EGAVGA driver) < 0)
{ -
printf("couldn't find VGA driver"); return;
}

initgraph(&driver, &mode, NULL);

printf("Press ENTER to rotate, ESC to quit.");

center.x = 320; center .y = 240;
vertex.x = 470; vertex .y = 240;
radius= vertex.x - center.x;
/* Calculate the radial spoke : vertex - center. */
del.x = vertex.x - center.x;
del.y = vertex.y - center .y;

setwritemode(XOR_PUT);

/* Draw circumscribing circle. */
setcolor(RED);
circle(center.x, center.y, radius);

/* Draw small cross at center. */
DrawCross(center, YELLOW);
setcolor(WHITE);

/* Setup CORDIC system, initialize theta= 0. */
Si nCosSetup ();
theta= O;

/* Draw initial hexagon. */
DrawHexagon(center, vertexl = vertex);

/* Rotate hexagon . vertex is fixed; vertexl rotates
* clockwise around vertex in increments of 650
* CORDIC units (3.57 deg). CORDIC sines/cosines are
* used to find vertex!. DrawHexagon() also uses
* CORDIC sines/cosines to calculate the remaining
* vertices for each hexagon so they can be drawn.
*/

The C Users Journal - November 1992

·and
Michael Bertrand The CORDIC Method for Faster sin and cos Calculations

Figure 1 Illustrates the geometry of a counter-clockwise
rotation at the i th step

Figure 2 Hexagon rotator

Rotate counter-clockwise

from p to pl through tan -1 (2 -i)

yl

y

M++ libraries provide a
complete, multidimensional
array language extension to
C++.

M++ supports cross-platform
application development on
Borland, Microsoft, Symantec
and many UNIX based C++
compilers.

M++'s high performance C++
classes and functions dra
matically simplify array ma
nipulation, slash development
time, reduce maintenance costs,
and improve reliability.

The C Users Journal - November 1992

p=(x,y)

M++
• Allows arrays or sub-sets of

arrays
• Reduces code size
• Allows up to 4 dimensional

arrays
• Includes UNPACK and

EISPACK
• Includes matrix, vector,

symmetric matrix, and
triangular matrix classes

New Version 4.0 features:
• Multi-dimensional FFTs and

convolutions
• Huge memory pointer for

Borland and Microsoft C++
compilers

• BitArray and PointerArray
classes

❖ Request 459 on Reader Service Card ❖

Rotate clockwise)
~

OPTIONAL M++ MODULES
• SUM-Statistical Uti lities

Module
• LSM-Least Squares Module
• OPTIM-Optimization Module
• TEST-Test Module
• QUAD-Numerical Integration

Module
• ODE-Ordinary Differential

Equations Module

dyad
software
515 116th Avenue NE
Suite 120
Bellevue, WA 98004
(800) 366-1573
(206) 637-9428 FAX

Page 61

The CORDIC Method for Faster sin and cos Calculations

angle and calculated sine and cosine are assumed to be in
CORDIC units. SinCosSetup initializes needed global vari
ables, including the special ·arctan angles and x In it, the initial
contracted vector length. SinCosSetup must be called once
only for initialization before calling SinCos. The CORDIC al
gorithm in SinCos works on first quadrant angles only (0 - 90,
or O - 16383 CAU). SinCos translates angles from other quad
rants into the first quadrant before applying the algorithm.
The calculated sine and cosine will be correct, except possibly
for the sign, which is adjusted before returning from the
routine.

A hexagon rotator is included to demonstrate the CORD IC
system (see Figure 2). A center point and initial vertex remain
fixed while another point, vertexl, rotates clockwise around
the original vertex in increments of 650 CAU (3.57). For each
vertexl, the five associated regular hexagon vertices are calcu
lated and the hexagon is drawn using Borland C+ +'s line
drawing commands. The routine calculating the vertices, Calc

HexPts, calculates the sine and cosine of 60° (10923 CAU)
only once and calculates each vertex from the previous one.
This practice cannot be used for continual rotating because of
accumulating errors from integer rounding as well as inexact
sines and cosines.

Timing tests show the CORDIC method to be over 20
times faster than the standard method when calculating the
vertices of a regular hexagon, a characteristic computer

Page 62

STOP THE PIRATES®!
USE THE PROVEN PLUG

The proof is in our thousands of
satisfied customers - You too deserve
the best protection at the lowest price!

EliaShim's Software Protection Systems:
MEMOPLUG®

Protection based on a combination of a unique
code, a serial number and a version number.

FILES OPTION
Memoplug-based protection for NON-executable

programs, such as AUTOCAD, LOTUS, inter
preter data files, run time modules, macros, LISP.

LANPLUG®
Complete protection for a network with one plug.

Limits number of users.

COMING SOON!
Lease your software with

CLOCKPLUG®
Call for details and availabi lity

EliaShim
M I C R O C O :\-1 P U T E R S I !'i C

Call Now:1-800-677-1587
:"20 \\. H\\ \ -nh. Suik 11 SO

\lt; 11 111111 tl· sJ,rn1~,. l ·I. _;271 •
n .:i .. (-Hl7 1 <)x.2-1 :=;x7 F.\X: (-l.07, :-; <,l). 1-io1>

❖ Request 175 on Reader Service Card ❖

while (getch() != ESC)
{
/* Erase last hexagon. */
DrawHexagon(center, vertex!);

Michael Bertrand

/* Inc theta by 650 CORDIC units (3.57 deg). */
theta+= 650;
SinCos(theta, &sine, &cosine);
/* Cale new vertex by rotating around center. */
vertexl.x = (int)

(((long) del.x * cosine - (long) del.y *sine+
HalfBase) >> NBITS) + center.x;

vertexl.y = (int)
(((long) del.x *sine+ (long) del.y * cosine+
HalfBase) >> NBITS) + center.y;

/* Draw new hexagon. */
DrawHexagon(center, vertex!);
}

closegraph();

void CalcHexPtsCORDIC(POINT center, POINT vertex)
/*

USE: Cale array of hex vertices using CORDIC calcs.
center= center of hexagon .

*/
{

IN:
vertex= ?ne of the hexagon vertices

NOTE : Loads global array HexPoints[] with other 5
vertices of regular hexagon. Uses CORDIC routines
for trig and long integer calculations .

int· sine;
int cosine;
int corner;
POINT del;

/* sine of central angle*/
/* cosine of central angle*/
/* index for vertices of polygon*/
/* vertex - center (radial spoke) */

/* 60 deg . = 10923 CORDIC units . */
SinCos(10923, &sine , &cosine);

/* Set initial and final point to incoming vertex. */
HexPts[O].x HexPts[NUM PTS].x vertex.x;
HexPts[O].y = HexPts[NUM=PTS] .y = vertex.y;

/* Go clockwise around circle to calc hex points. */
for (corner= 1; corner< NUM PTS; corner++)

{ -
/* Calculate the radial spoke : vertex - center. */
del .x = vertex.x - center.x;
del.y = vertex.y - center .y;
/* calc new vertex by rotating around center. */
vertex.x = (int)

(((long) del.x * cosine - (long) del.y *sine+
HalfBase) >> NBITS) + center.x;

vertex.y = (int)
(((long) del.x *sine+ (long) del.y *cosine+
HalfBase) >> NBITS) + center.y;

/* Store new vertex in array.*/
HexPts[corner].x vertex.x;
HexPts[corner].y = vertex.y;
}

void DrawHexagon(POINT center, POINT vertex)
/*

USE:
IN:

Draw Hexagon given center and one vertex.
center= center of hexagon.
vertex= one of the hexagon vertices

NOTE: Call CalcHexPtsCORDIC() to load global array
HexPts[] with hexagon vertices .

*/

The C Users Journal - November 1992

d Michael Bertrand

CalcHexPtsCORDIC(center, vertex);
drawpoly(NUM_PTS+l, (int far *)HexPts);

void DrawCross(POINT pt, int colr)
/*

USE: Draw cross on screen at pt with given color.
*/
{

int oldColor;

setwritemode(COPY PUT);
oldColor = getcolor();
setcolor(colr) ;
moveto(pt.x - 2, pt.y); lineto(pt.x + 2, pt.y);
moveto(pt.x , pt.y - 2); lineto(pt .x, pt.y + 2);
setcolor(oldColor);
setwritemode(XOR_PUT);

void SinCosSetup(void)
/*

*/
{

USE: Load globals used by SinCos().
OUT: Loads globals used in SinCos()
CordicBase = base for CORDIC units
HalfBase = Cordicbase / 2
Quad2Boundary = 2 * CordicBase
Quad3Boundary = 3 * CordicBase
ArcTan[] = the arctans of l/(2Ai)
xlnit = initial value for x projection

NOTE: Must be called once only to initialize before
calling SinCos(). xlnit is sufficiently less than
CordicBase to exactly compensate for the expansion
in each rotation.

inti;
double f ;
long powr;

/ * to index ArcTan[] */
/ * to calc initial x projection*/
/ * powers of 2 up to 2A(2*(NBITS-1)) */

CordicBase = 1 << NBITS ;
HalfBase = CordicBase >> 1;
Quad2Boundary = CordicBase << 1;
Quad3Boundary = CordicBase + Quad2Boundary;

/ * ArcTan's are diminishingly small angles. */
powr = 1;
for (i = O; i < NBITS ; i++)

{
ArcTan[i] = (int)

(atan(l.O/powr)/(M_Pl/2) *CordicBase + 0.5) ;
powr <<= 1;
}

/ * xlnit is initial value of x projection to comp-
* ensate for expansions . f = 1/sqrt(2/1 * 5/4 * .. .
* Normalize as an NBITS binary f raction (multiply by
* CordicBase) and store in xlnit. Get f = 0. 607253
* and xlnit = 9949 = Ox26DD for NBITS = 14.
*/

f = 1.0;
powr = 1;
for (i = O; i < NBITS ; i++)

{
f = (f * (powr + 1)) / powr;
powr <<= 2;
}

f = 1.0/sqrt(f) ;
xlnit = (int) (CordicBase * f + 0.5);

The C Users Journal - November 1992

The CORDIC Method for Faster sin and cos Calculations

void
/*

USE
IN
OUT

SinCos(WORD theta, int *sin, int *cos)

Cale sin and cos with integer CORDIC routine.
theta= incoming angle (in CORDIC angle units)
sin= ptr to sin (in CORDIC fixed point units)
cos= ptr to cos (in CORDIC fixed point units)

*/
{

NOTE: The incoming angle theta is in CORDIC angle
units, which subdivide the circle into 64K parts,
with O deg= 0, 90 deg= 16384 (CordicBase), 180 deg
= 32768, 270 deg= 49152, etc. The calculated sine
and cosine are in CORDIC fixed point units : an int
considered as a fraction of 16384 (CordicBase).

int quadrant; /* quadrant of incoming angle*/
int z; /* incoming angle moved to 1st quad*/
int i; /* to index rotations : one per bit*/
int x, y; /* projections onto axes*/
int xl, yl; /* projections of rotated vector*/

/* Determine quadrant of incoming angle, translate to
* 1st quadrant. Note use of previously calculated
* values CordicBase, etc. for speed.
*/

'![=~;:: I
-

Windbase Software's CDSL is the most effective way to set up and
manage your data structure needs. It is both powerful and affordable,
with over 60 functions that allow you to easily handle such complex I

data structures as: I

Stacks I'

if Queues
Dequeues ' H Hash Tables

Binary Trees
! Linked Ii st s , '

Circularlists
i Balanced Trees

· '
f Dynamic Arrays ':

" And More! i

Available for MS-DOS and UNIX operating systems.
' Save hours of coding and debugging time. Order the CDSL today! I

,:!
MS-DOS Library $139.99. UNIX $189.99.

SPECIAL OFFER - Source Code Included Thru 12/31/92 ~-
.[

:: ·-
For more information or to order by Visa or MC please call :

; Windbase Software Inc.
(602) 561-8788 '

··•• FAX-(602) 56 1-8106
Or write: P.O. Box 10 115 Glendale, AZ 853 18-0 115

Please specify C- Compiler and Operating system when ordering.
All trademarks are the property of their respective owners.

··~"- -
❖ Request 178 on Reader Service Card ❖

Page 63

The CORDIC Method for Faster sin and cos Calculations

graphics task. The savings are due to the elimination of float
ing-point calculations as well as fast sine and cosine evaluation.

An exhaustive test of all 16384 CAUs shows that the worst
error in a sine or cosine is 0.00064 and the average error is
0.00011. This is over 13 bits of accuracy on average, or better
than one part in 8000, quite adequate for many screen-related
computer graphics applications.

The original papers on this topic read very well, and are
accessible through an excellent reprint by IEEE (Computer
Arithmetic). Also helpful are articles cited below in Graphics
Gems. Both volumes are essential for computer graphics
workers. •

References
Linhardt, R. J., and H. S. Miller 1969. "Digit-by-Digit

Transcendental Function Computation". RCA Rev. 30:209-247.
(Reprinted in E. Swartzlander (ed.) 1990. Computer Arith
metic. IEEE Computer Society Press, 233-271.)

Ritter, Jack. "Fast 2D-3D Rotation". In A. S. Glassner
1990. Graphics Gems. Academic Press, 440-441.

Turkowski, Ken. "Fixed-Point Trigonometry with CORDIC
Iterations". In A. S. Glassner 1990. Graphics Gems. Academic
Press, 494-497.

Voider, Jack E. 1959. "The CORDIC Trigonometric Com
puting Technique". IRE Trans. Electron. Comput. EC-8:330-
334. (Reprinted in E. Swartzlander (ed.) 1990. Computer Arith
metic. IEEE Computer Society Press, 226-230.)

THREE NEW CIC+ + TOOLS TO CUT

YOUR' DEVELOPMENT TIME!

C*DRIVE version 1.1 US$ 140.00

- Low level video, keyboard, mouse.
S&H

- Printer control, crit. error handler, string handling.

- Pull down and pop up menu modules.

- Data entry module "ith error checking.

- Pop up caluculator and calendar.

- Many additional features, all "ith source code.

5.00 us
15.00 INTL

C*DRJVE+ + version 1.0
US$ 140.00
S&H 5.00 US

- Low level video, keyboard, mouse classes. 15.00 INTL

- Printer, crit error handler, string handling classes.

- Pull down and pop up menu classes.
- Directory, color selector classes,

- Windows class with movable/overlapping "indows.

- Form/data entry class "ith error checking.
- Many additional features, all with source code.

F ASTVIEW version 1.0
US$ 199.00
S&H 5.00 US

Hyper text help engine which includes: 15.00 INTL

Makeview help compiler and Fastview help engine (TSR).

Use "ith C*DRIVE+ + or as standalone. Source code for
Fastview engine included, Distribution kit.

Please call (703)765-0654 for more information. • VISNMC/C.O.D. All libraries are royalty free!

The Friendly Solutions
6309 Chimney Woods Court
Alexandria, Virginia 22306 - U.S.A.

❖ Request 350 on Reader Service Card ❖
Page 64

}

if (theta< CordicBase)
{
quadrant= QUADl;
z = (int) theta;
}

else if (theta< Quad2Boundary)
{
quadrant= QUAD2;
z = (int) (Quad2Boundary - theta);
}

else if (theta< Quad3Boundary)
{
quadrant= QUADJ;
z = (int) (theta - Quad2Boundary);
}

else
{
quadrant= QUAD4;
z = - ((int) theta);
}

/* Initialize projections. */
x = xlnit;
y = O;

Michael Bertrand

/* Negate z, so same rotations taking angle z to O
* will take (x, y) = (xlnit, 0) to (*cos, *sin).
*/

z = -z;

/* Rotate NBITS times. */
for (i = O; i < NBITS; i++)

{
if(z<O)

{
/* Counter-clockwise rotation. */
z += ArcTan[i];
yl = y + (x >> i);
xl = X - (y >> i);
}

else
{
/* Clockwise rotation. */
z -= ArcTan[i];
yl = y - (x >> i);
Xl = X + (y >> i);
}

/* Put new projections into (x,y) for next go.*/
X = xl;
y = yl;
} /* for i */

/* Attach signs depending on quadrant.*/
*cos (quadrant==QUADl I I quadrant==QUAD4) ? x -x;
*sin= (quadrant==QUADl I I quadrant==QUAD2) ? y -y;

/* End of File*/

The C Users Journal - November 1992

