
The CORDIC Method for Faster sin 
and cos Calculations 

Michael Bertrand 

CORDIC stands for Coordinate Rotation Digital Com
puter, an early device implementing fast integer sine and 
cosine calculations (Voider, 1959). Whenever trigonometry 
functions must be evaluated repeatedly, as in computer 
graphics, integer methods, such as CORDIC, should be con
sidered. While integer methods are less accurate than the C 
Library functions sin and cos, the improved speed makes the 
tradeoff quite acceptable in some applications. 

CORDIC Units 
The key to the CORDIC method is the representation of 

both angles and trigonometric ratios as integers. In this im
plementation a 16-bit unsigned integer represents the angles 
around the circle as shown in Table 1. 

With CORDIC angle units, or CAUs, the circle divides into 
64K parts instead of 360 parts using degrees. Each degree 
measures about 182 CAU. 

Sine and cosine values are represented as signed integers, 
with an implicit denominator of 16384 (CordicBase in the ac
companying program). Calculated sines and cosines lie in the 
range -16384 to + 16384, corresponding to a trigonometric 
ratio between -1 and + 1. Table 2 contains sample correspon
dents in this fixed point scheme. 

Suppose your application receives a value of 100 and must 

multiply it by sin(54°) to produce the nearest integer (a 
realistic example from computer graphics where input and out-

put are pixel locations). The standard approach, using the C 
Standard Library sin call, amounts to: 

100 x sin(54°) = 100 x 0.8090 = 80.90 -> 81 

Both the floating-point multiplication and the sin are ex
pensive. 

The CORDIC version of this calculation substitutes a fast 
sin and long integer multiplication (where 54° = 9830 CAU 
and sin(9830 CAU) = 13255 CORDIC fixed-point units): 

100 x sin(9830) = (100 x 13255 + 8192) / 16384 = 
81.40 -> 81 

The 8192 is added for integer rounding (8192/16384 
0.5). The division by 16384 is done with an inexpensive right 
shift. CORDIC's speed is due to the fast sine calculation and 
the complete avoidance of floating-point calculations. 

CORDIC Special Angles 
The CORDIC algorithm depends on representing a given 

angle by a set of special angles, {arctan(2-i)} = {arctan{l), 
arctan(l/2), arctan(l/4), ... } : 

arctan( 1) 

arctan ( 1/2) 
45.00° = 8192 CAU 

26.57° = 4836 CAU 
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arctan( 1/4) 
arctan( 1/8) 
arctan(l/16) 

14.04° 2555 CAU 
7.13° 1297 CAU 
3.58° 651 CAU 

Using these special angles, 54° is represented to a finer and 
finer precision as follows: 

54° 45.00 
54° 45.00 + 26.57 
54° 45 .00 + 26.57 - 14.04 

45.00 
71.57 
57.53 

Table 1 16-bit unsigned integers representing the angles 
around the circle 

degrees CORDIC angle units (CAU) 

0 0 

45 8192 

90 16384 
180 32768 

270 49152 
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54° 45.00 + 26.57 14.04 7.13 50.40 
54° 45.00 + 26.57 14.04 7.13 + 3.58 53.98 

This approximation has a physical interpretation. Think in 
terms of a vector 16384 units long and emanating from the 

origin in a standard x-y coordinate system. Starting at 0° along 
the positive x axis, the vector rotates through each of the spe
cial angles one step at a time. Rotation at each step may be 
clockwise or counter-clockwise, whichever is needed to bring 
the vector closer to 54°. The special angles represent rotations 
by smaller and smaller amounts, with positive signifying 

Table 2 Sample correspondents in a fixed-point scheme 
where calculated sines and cosines lie in the range -16384 
to + 16384, corresponding to a trigonometric ratio between 
-1 and +7 

decimal CORDIC fixed point units 

-0.8 -13107 

-0.5 -8192 

0.0 0 
0.25 +4096 

+0.5 +8192 

Listing 1 C0RDIC.C 

/* CORDIC.C : Demonstrates the integer-based CORDIC 
system for calculating sines and cosines. The 
vertices of a regular hexagon are calculated using 
CORDIC trig and the hexagon itself is rotated. 

* 
* 
* 

* 
Make in Borland C++'s internal environment. 
(c) 1991 Michael Bertrand. 

*/ 

#include <stdio.h> 
#include <math.h> 
#include <conio . h> 
#include <graphics.h> 

typedef struct 
{ 

int x; 
int y; 
POINT; 

/* printf */ 
/* sqrt, atan */ 
/* getch */ 
/* BGI */ 

typedef unsigned int WORD; 

void CalcHexPtsCORDIC(POINT center, POINT vertex); 
void DrawHexagon(POINT center, POINT vertex); 
void DrawCross(POINT pt, int colr); 
void SinCosSetup(void); 
void SinCos(WORD theta, int *sin, int *cos); 

#define ESC OxlB 

/* Quadrants for angles.*/ 
#define QUADl 1 
#define QUAD2 2 
#define QUAD3 3 
#define QUAD4 4 
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counter-clockwise rotation and negative signifying clockwise 
rotation. 

Expansion Factor 

Starting at 0° along the positive x axis, +45.00° is a 
counter-clockwise rotation into the middle of the first quad
rant. The next step again rotates counter-clockwise by another 
26.57°, but this results in 71.57°, which overshoots the mark. 
The third rotation is therefore clockwise, signified by the 

minus 14.04°, bringing the result back to 57.53°. This continues 
as many times as there are bits in 16384--14 times. 

A problem arises with pl, which is further from the origin 
than p was at each step, so the vector does not simply rotate 
around a circle of radius 16384, but also expands. The expan
sion can be exactly measured by applying the Pythagorean 
theorem to the right triangle containing p and pl: 

p12 

The x and y coordinates of the rotating vector are the 
cosine and sine of the vector's angle at each step, assuming 
that the vector's length, 16384, doesn't 
change during rotation. As the vector's 

angle approaches 54° more closely, its x 
and y coordinates provide better ap-

proximations of cos(54°) and sin(54°). 

CORDIC Equations 
Figure 1 illustrates the geometry of a 

counter-clockwise rotation at the i th 

step. Rotate vector p through an angle of 
arctan(2-i) to new vector pl such that 
the indicated angle at p is a right angle. 
The task is to express the new ( cosine, 
sine) approximations (xl, yl) in terms of 
the old ones (x, y). The two shaded tri
angles are similar because they are right 
triangles with acute angles that are equal. 
In the right triangle connecting p and pl 
to the origin, the two legs R* and R are in 
the proportion 1 : 2i by the definition of 
arctan(2-i)) : 

ri = tan(arctan(2-i)) = (R*}/R 

R and R* are the hypotenuses of the 
two similar triangles, so these triangles 
are in the proportion 1 : z•i_ This implies 
that the shorter horizontal leg of the 
small triangle is y/(2i) and the longer, 
vertical leg is x/(2\ leading to the 
counter-clockwise equations: 

ccw rotation xl 
yl 

X - y/(2i) 
Y + x/(2;) 

Rotating pl clockwise leads to the 
clockwise equations, identical except for 
a sign reversal: 

cw rotation xl 
yl 

X + y/(2i) 
Y - x/(2;) 

These are fast operations involving in
teger addition, subtraction and shifting. 
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or: 

Pl R * ✓ 22i 1 
+ 22i 

The first rotation ( 45°) expands the vector by a factor of ./2 
= 1.414; the second rotation (26.57°) expands it further by a 

factor of /f = 1.118; the third rotation (14.04°) expands by 

~ = 1.031, and so on. Each of the 14 rotations entails such 

an expansion, although the later ones are negligible. 
The net effect is an expansion by a factor of 1.414 x 1.118 x 

1.031 x ... = 1.646760. The original vector will expand to 
1.646760 x 16384 = 26981 in the course of rotating. To offset 
this expansion, the original vector is contracted before starting 
the process to bring its final length, after the rotation/ expan
sions, back to 16384. Instead of initializing the vector to 16384, 
it is initialized to xlnit = 16384 /1.646760 = 9949, which ex
pands to 16384 after 14 steps. At the last step the vector's x 
~nd y coordinates will be the cosine and sine in CORDIC 

fixed-point units (based on 16384). 

Implementation Notes 
The central routine is SinCos (See Listing 1), which calcu

lates the sine and cosine of an incoming angle. Both incoming 
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/* NBITS is number of bits for CORDIC units. */ 
#define NBITS 14 

/* NUM PTS is number of vertices in polygon.*/ 
#define NUM PTS 6 

int ArcTan[NBITS]; 
int xinit; 

/* angles for rotation*/ 
/* initial x projection*/ 
/* base for CORDIC units*/ 
/* CordicBase / 2 */ 

WORD CordicBase; 
WORD HalfBase; 
WORD Quad2Boundary; /* 2 * CordicBase */ 
WORD Quad3Boundary; 
POINT HexPts[NUM_PTS+l]; 

/* 3 * CordicBase */ 
/* calculated poly points*/ 

void main(void) 
{ 

int driver; 
int mode; 
WORD theta; 
int sine; 
int cosine; 
POINT center; 
PO INT vertex; 
POINT vertex!; 
POINT del; 
int radius; 

driver= VGA; 
mode = VGAHI; 

/* for initgraph() */ 
/* for initgraph() */ 
/* CORDIC angle*/ 
/* sine of CORDIC angle*/ 
/* cosine of CORDIC angle*/ 
/* center of hexagon*/ 
/* hexagon's original base vertex*/ 
/* hexagon's changing base vertex*/ 
/* vertex - center (radial spoke) */ 
/* radius of circumscribing circle*/ 

/* for initgraph() */ 
/* mode Oxl2 : 640x480 16 color*/ 

if (registerbgidriver(EGAVGA driver) < 0) 
{ -
printf("couldn't find VGA driver"); return; 
} 

initgraph(&driver, &mode, NULL); 

printf("Press ENTER to rotate, ESC to quit."); 

center.x = 320; center .y = 240; 
vertex.x = 470; vertex .y = 240; 
radius= vertex.x - center.x; 
/* Calculate the radial spoke : vertex - center. */ 
del.x = vertex.x - center.x; 
del.y = vertex.y - center .y; 

setwritemode(XOR_PUT); 

/* Draw circumscribing circle. */ 
setcolor(RED); 
circle(center.x, center.y, radius); 

/* Draw small cross at center. */ 
DrawCross(center, YELLOW); 
setcolor(WHITE); 

/* Setup CORDIC system, initialize theta= 0. */ 
Si nCosSetup (); 
theta= O; 

/* Draw initial hexagon. */ 
DrawHexagon(center, vertexl = vertex); 

/* Rotate hexagon . vertex is fixed; vertexl rotates 
* clockwise around vertex in increments of 650 
* CORDIC units (3.57 deg). CORDIC sines/cosines are 
* used to find vertex!. DrawHexagon() also uses 
* CORDIC sines/cosines to calculate the remaining 
* vertices for each hexagon so they can be drawn. 
*/ 
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Figure 1 Illustrates the geometry of a counter-clockwise 
rotation at the i th step 

Figure 2 Hexagon rotator 

Rotate counter-clockwise 

from p to pl through tan -1 (2 -i ) 

yl 

y 

M++ libraries provide a 
complete, multidimensional 
array language extension to 
C++. 

M++ supports cross-platform 
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Borland, Microsoft, Symantec 
and many UNIX based C++ 
compilers. 
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nipulation, slash development 
time, reduce maintenance costs, 
and improve reliability. 
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angle and calculated sine and cosine are assumed to be in 
CORDIC units. SinCosSetup initializes needed global vari
ables, including the special ·arctan angles and x In it, the initial 
contracted vector length. SinCosSetup must be called once 
only for initialization before calling SinCos. The CORDIC al
gorithm in SinCos works on first quadrant angles only (0 - 90, 
or O - 16383 CAU). SinCos translates angles from other quad
rants into the first quadrant before applying the algorithm. 
The calculated sine and cosine will be correct, except possibly 
for the sign, which is adjusted before returning from the 
routine. 

A hexagon rotator is included to demonstrate the CORD IC 
system (see Figure 2). A center point and initial vertex remain 
fixed while another point, vertexl, rotates clockwise around 
the original vertex in increments of 650 CAU (3.57). For each 
vertexl, the five associated regular hexagon vertices are calcu
lated and the hexagon is drawn using Borland C+ +'s line 
drawing commands. The routine calculating the vertices, Calc

HexPts, calculates the sine and cosine of 60° (10923 CAU) 
only once and calculates each vertex from the previous one. 
This practice cannot be used for continual rotating because of 
accumulating errors from integer rounding as well as inexact 
sines and cosines. 

Timing tests show the CORDIC method to be over 20 
times faster than the standard method when calculating the 
vertices of a regular hexagon, a characteristic computer 
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/* Inc theta by 650 CORDIC units (3.57 deg). */ 
theta+= 650; 
SinCos(theta, &sine, &cosine); 
/* Cale new vertex by rotating around center. */ 
vertexl.x = (int) 

(((long) del.x * cosine - (long) del.y *sine+ 
HalfBase) >> NBITS) + center.x; 

vertexl.y = (int) 
(((long) del.x *sine+ (long) del.y * cosine+ 
HalfBase) >> NBITS) + center.y; 

/* Draw new hexagon. */ 
DrawHexagon(center, vertex!); 
} 

closegraph(); 

void CalcHexPtsCORDIC(POINT center, POINT vertex) 
/* 

USE: Cale array of hex vertices using CORDIC calcs. 
center= center of hexagon . 

*/ 
{ 

IN: 
vertex= ?ne of the hexagon vertices 

NOTE : Loads global array HexPoints[] with other 5 
vertices of regular hexagon. Uses CORDIC routines 
for trig and long integer calculations . 

int· sine; 
int cosine; 
int corner; 
POINT del; 

/* sine of central angle*/ 
/* cosine of central angle*/ 
/* index for vertices of polygon*/ 
/* vertex - center (radial spoke) */ 

/* 60 deg . = 10923 CORDIC units . */ 
SinCos(10923, &sine , &cosine); 

/* Set initial and final point to incoming vertex. */ 
HexPts[O].x HexPts[NUM PTS].x vertex.x; 
HexPts[O].y = HexPts[NUM=PTS] .y = vertex.y; 

/* Go clockwise around circle to calc hex points. */ 
for (corner= 1; corner< NUM PTS; corner++) 

{ -
/* Calculate the radial spoke : vertex - center. */ 
del .x = vertex.x - center.x; 
del.y = vertex.y - center .y; 
/* calc new vertex by rotating around center. */ 
vertex.x = (int) 

(((long) del.x * cosine - (long) del.y *sine+ 
HalfBase) >> NBITS) + center.x; 

vertex.y = (int) 
(((long) del.x *sine+ (long) del.y *cosine+ 
HalfBase) >> NBITS) + center.y; 

/* Store new vertex in array.*/ 
HexPts[corner].x vertex.x; 
HexPts[corner].y = vertex.y; 
} 

void DrawHexagon(POINT center, POINT vertex) 
/* 

USE: 
IN: 

Draw Hexagon given center and one vertex. 
center= center of hexagon. 
vertex= one of the hexagon vertices 

NOTE: Call CalcHexPtsCORDIC() to load global array 
HexPts[] with hexagon vertices . 

*/ 
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CalcHexPtsCORDIC(center, vertex); 
drawpoly(NUM_PTS+l, (int far *)HexPts); 

void DrawCross(POINT pt, int colr) 
/* 

USE: Draw cross on screen at pt with given color. 
*/ 
{ 

int oldColor; 

setwritemode(COPY PUT); 
oldColor = getcolor(); 
setcolor(colr) ; 
moveto(pt.x - 2, pt.y); lineto(pt.x + 2, pt.y); 
moveto(pt.x , pt.y - 2); lineto(pt .x, pt.y + 2); 
setcolor(oldColor); 
setwritemode(XOR_PUT); 

void SinCosSetup(void) 
/* 

*/ 
{ 

USE: Load globals used by SinCos(). 
OUT: Loads globals used in SinCos() 
CordicBase = base for CORDIC units 
HalfBase = Cordicbase / 2 
Quad2Boundary = 2 * CordicBase 
Quad3Boundary = 3 * CordicBase 
ArcTan[] = the arctans of l/(2Ai) 
xlnit = initial value for x projection 

NOTE: Must be called once only to initialize before 
calling SinCos(). xlnit is sufficiently less than 
CordicBase to exactly compensate for the expansion 
in each rotation. 

inti; 
double f ; 
long powr; 

/ * to index ArcTan[] */ 
/ * to calc initial x projection*/ 
/ * powers of 2 up to 2A(2*(NBITS-1)) */ 

CordicBase = 1 << NBITS ; 
HalfBase = CordicBase >> 1; 
Quad2Boundary = CordicBase << 1; 
Quad3Boundary = CordicBase + Quad2Boundary; 

/ * ArcTan's are diminishingly small angles. */ 
powr = 1; 
for (i = O; i < NBITS ; i++) 

{ 
ArcTan[i] = (int) 

(atan(l.O/powr)/(M_Pl/2) *CordicBase + 0.5) ; 
powr <<= 1; 
} 

/ * xlnit is initial value of x projection to comp-
* ensate for expansions . f = 1/sqrt(2/1 * 5/4 * .. . 
* Normalize as an NBITS binary f raction (multiply by 
* CordicBase) and store in xlnit. Get f = 0. 607253 
* and xlnit = 9949 = Ox26DD for NBITS = 14. 
*/ 

f = 1.0; 
powr = 1; 
for (i = O; i < NBITS ; i++) 

{ 
f = (f * (powr + 1)) / powr; 
powr <<= 2; 
} 

f = 1.0/sqrt(f) ; 
xlnit = (int) (CordicBase * f + 0.5); 
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void 
/* 

USE 
IN 
OUT 

SinCos(WORD theta, int *sin, int *cos) 

Cale sin and cos with integer CORDIC routine. 
theta= incoming angle (in CORDIC angle units) 
sin= ptr to sin (in CORDIC fixed point units) 
cos= ptr to cos (in CORDIC fixed point units) 

*/ 
{ 

NOTE: The incoming angle theta is in CORDIC angle 
units, which subdivide the circle into 64K parts, 
with O deg= 0, 90 deg= 16384 (CordicBase), 180 deg 
= 32768, 270 deg= 49152, etc. The calculated sine 
and cosine are in CORDIC fixed point units : an int 
considered as a fraction of 16384 (CordicBase). 

int quadrant; /* quadrant of incoming angle*/ 
int z; /* incoming angle moved to 1st quad*/ 
int i; /* to index rotations : one per bit*/ 
int x, y; /* projections onto axes*/ 
int xl, yl; /* projections of rotated vector*/ 

/* Determine quadrant of incoming angle, translate to 
* 1st quadrant. Note use of previously calculated 
* values CordicBase, etc. for speed. 
*/ 

'![=~;:: I 
-
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graphics task. The savings are due to the elimination of float
ing-point calculations as well as fast sine and cosine evaluation. 

An exhaustive test of all 16384 CAUs shows that the worst 
error in a sine or cosine is 0.00064 and the average error is 
0.00011. This is over 13 bits of accuracy on average, or better 
than one part in 8000, quite adequate for many screen-related 
computer graphics applications. 

The original papers on this topic read very well, and are 
accessible through an excellent reprint by IEEE ( Computer 
Arithmetic). Also helpful are articles cited below in Graphics 
Gems. Both volumes are essential for computer graphics 
workers. • 
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} 

if (theta< CordicBase) 
{ 
quadrant= QUADl; 
z = (int) theta; 
} 

else if (theta< Quad2Boundary) 
{ 
quadrant= QUAD2; 
z = (int) (Quad2Boundary - theta); 
} 

else if (theta< Quad3Boundary) 
{ 
quadrant= QUADJ; 
z = (int) (theta - Quad2Boundary); 
} 

else 
{ 
quadrant= QUAD4; 
z = - ((int) theta); 
} 

/* Initialize projections. */ 
x = xlnit; 
y = O; 

Michael Bertrand 

/* Negate z, so same rotations taking angle z to O 
* will take (x, y) = (xlnit, 0) to (*cos, *sin). 
*/ 

z = -z; 

/* Rotate NBITS times. */ 
for (i = O; i < NBITS; i++) 

{ 
if(z<O) 

{ 
/* Counter-clockwise rotation. */ 
z += ArcTan[i]; 
yl = y + (x >> i); 
xl = X - (y >> i); 
} 

else 
{ 
/* Clockwise rotation. */ 
z -= ArcTan[i]; 
yl = y - (x >> i); 
Xl = X + (y >> i); 
} 

/* Put new projections into (x,y) for next go.*/ 
X = xl; 
y = yl; 
} /* for i */ 

/* Attach signs depending on quadrant.*/ 
*cos (quadrant==QUADl I I quadrant==QUAD4) ? x -x; 
*sin= (quadrant==QUADl I I quadrant==QUAD2) ? y -y; 

/* End of File*/ 
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