8) Let \( n = 1000. \) Find the order of the group of units for the ring \( \mathbb{Z} / n \mathbb{Z}. \)
Proof. Note \( 1000 = 2^3 \cdot 5^3. \) With the notation \( \mathbb{Z} / k \mathbb{Z} = \mathbb{Z}_k, \) Corollary 20 in §9.5 of Dummit & Foote says that in such a breakdown, \( \mathbb{Z}_{1000}^\times = \mathbb{Z}_{2^3}^\times \times \mathbb{Z}_{5^3}^\times, \) where \( \mathbb{Z}_k^\times \) is the multiplicative group of units in \( \mathbb{Z}_k \). For any prime \( p, |\mathbb{Z}_{p^\alpha}^\times| = \) #integers less than \( p^\alpha \) relatively prime to \( p^\alpha \) = \( \varphi(p^\alpha) = p^{\alpha-1}(p - 1), \) where \( \varphi \) is the Euler \( \varphi \)-function counting the number of positive integers less than a given positive integer and relatively prime to it.
So \( |\mathbb{Z}_{1000}^\times| = |\mathbb{Z}_{2^3}^\times| \cdot |\mathbb{Z}_{5^3}^\times| = \varphi(2^3) \cdot \varphi(5^3) = 2^2(2 - 1) \cdot 5^2(5 - 1) = 4 \cdot 25 \cdot 4 = 400. \) QED.